MF Finishing Talk

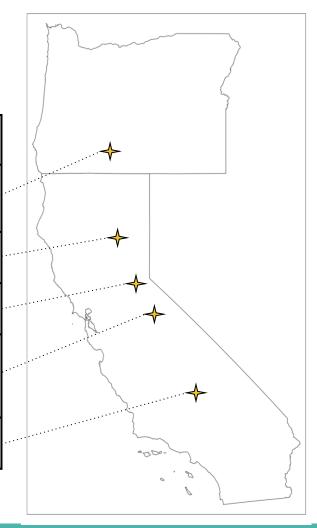
Connie Ryan

Overview

- Quantitative Information on Historical Forests in California
 - Variety of Sources
- Quantifying Resilience
 - Stand Density Index
- 2 Projects
 - QQ Dataset Synthesis
 - Applied Historical SDI

Brown & Brown, Inc.

QQ Dataset Synthesis

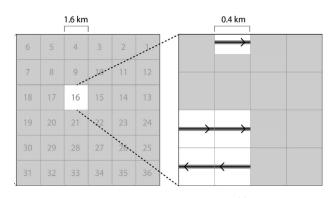

- 1. What were landscape-scale patterns of forest structure & composition across the most robust historical datasets?
 - Structure & Composition Summaries

- What effects do common analysis choices have on resulting forest structure & composition metrics?
 - Low BA, Minimum Diameter, SDI Calculation Method

- Is forest structure and composition distinct between California & Southern Oregon datasets?
 - Clustering Analysis

Study Sites

Location	Name	Year Sample Si		Citations
Former Klamath Indian Reservation	KIR	1914-1922	18,018	Hagmann et al. 2013, 2017, 2019
Collins Pine Company	COLLINS	1924	1,552	Collins et al. 2021
El Dorado National Forest	ELDO	1923-1936*	631	Stephens et al. 2018
Stanislaus National Forest + Yosemite National Park	STAN	1911	269	Collins et al. 2011, 2015, 2017
Sequoia National Forest	KERN	1911	379	Stephens et al. 2015


Study Sites

- Mixed-Conifer, PonderosaPine
- MediterraneanClimate
- Frequent Fire

Dataset	Forest Type	Elevation (m)	Annual Precipitation (cm)	Fire Return Interval (yr)
KIR	Ponderosa + Mixed-Conifer	1400	60 - 70	14.9
COLLINS	Mixed-Conifer	1554	124	12 - 14
ELDO	Fir Mixed-Conifer	1846	140	4.7 - 20+
STAN	Pine Mixed- Conifer	1432	100	12
KERN	Ponderosa + Mixed-Conifer	1833	32*	5 - 20

Data Collection

- Transects on PLSS
- Tree Size & Species
- Varying Resolution & Scale → "Sample"

Hagmann et al. 2013

Dataset	Scale	Resolution	Sampling Intensity	Minimum Diameter (cm)	Species Included
KIR	Q, Half QQ	Individual Tree	Majority 10% (20%) per Q (Half-QQ)	15.2	Conifers
COLLINS	QQ	Averages	40% per QQ	30.5	Conifers
ELDO	QQ	Averages	Majority 10% per QQ	15.2	All Species
STAN	QQ	Individual Tree	10% per QQ	15.2	Conifers
KERN	QQ	Individual Tree	5% per QQ	30.5	Conifers

Data Preparation & Cleaning

- Live Trees & Conifers
- Removed Samples
 - Incomplete Data
 - Unforested
 - Logged
 - Lodgepole-dominated
- 30.5cm Minimum Diameter

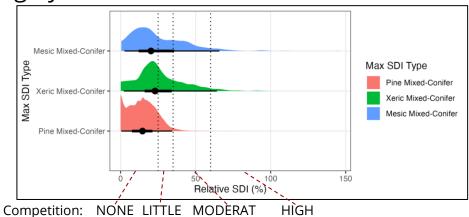
Analyses - Structure & Composition

- Sample Scale
- Structure & Composition Variables
 - Quadratic mean diameter (QMD, cm), tree density (TPH, trees ha⁻¹), basal area (BA, m²ha⁻¹), stand density index (SDI, metric), relative SDI (%)
 - Species Composition (BA)
 - Pine & Fir Fraction
- SDI
 - Additive, Traditional, Corrected
 - SDI_{max} by Species Composition
- Summarize Within & Across Datasets
 - Mean, SD, Range

Analyses - Analysis Choices

- Low-BA Sample Removal
 - o <9m²ha⁻¹
- Minimum Diameter Increase
 - o 15.2cm vs. 30.5cm
- SDI Ratio
 - SDI_A:SDI_T

```
SDI_A = \sum_i^N TPH_i * (\frac{DBH_i}{25.4})^{1.6}, where N = number of trees sampled, TPH<sub>i</sub> = trees ha<sup>-1</sup> represented by the i<sup>th</sup> tree, and DBH<sub>i</sub> = DBH of the i<sup>th</sup> tree (cm)
```

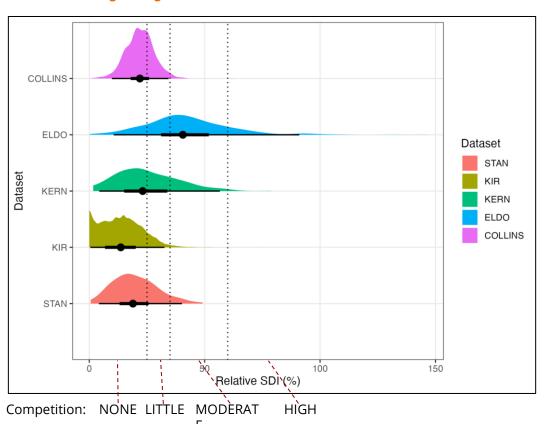

$$SDI_T = TPH * (\frac{QMD}{25.4})^{1.6}$$
, where TPH = trees ha⁻¹ and QMD = quadratic mean diameter (cm) of the sampled stand

Analyses - Clustering

- PCA \rightarrow K-Means
 - Key Structure & Composition Variables
 - 3 Principal Components
 - 4 Clusters
- Structure & Composition of Clusters
 - Descriptively Characterized
 - Mean, SD, Range

Results - Summary Across Datasets

- Low Density (TPH), Stocking (BA),
 Competition (relative SDI); Moderate to
 Large Trees
- Pine-Dominated
- Highly Variable



	Total
QMD (cm)	68.3 ± 10.5 (21.9* - 133.6)
BA (m²ha-¹)	11.5 ± 9.1 (0 - 158.8)
Tree density (trees ha ⁻¹)	31.9 ± 23.2 (0 - 354.6)
SDI (metric)	149 ± 112.7 (0.1 - 1987.5)
Relative SDI (%)	15.8 ± 10.8 (0 - 146.2)
% Pine (<i>Pinus</i>)	89.4 ± 21.1 (0 - 100)
% Fir (Abies)	6.9 ± 16.1 (0 - 100)

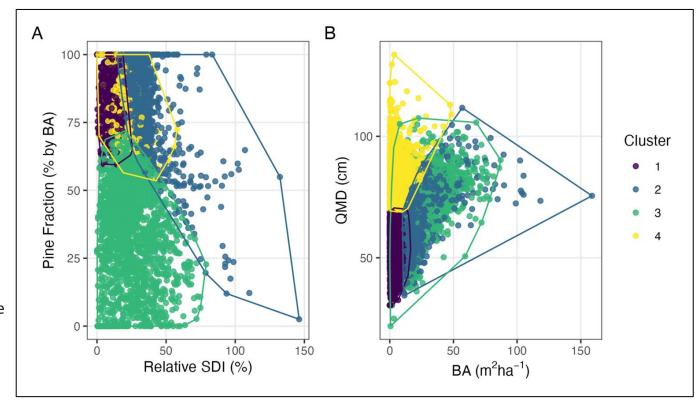
Results - Summary by Dataset

	COLLINS	ELDO	KERN	KIR	STAN
QMD (cm)	68.9 ± 5.6 (52.2 - 87.8)	80.4 ± 11.4 (21.9* - 129.6)	73.7 ± 10.9 (42.3 - 109.9)	67.6 ± 10.4 (30.5 - 133.6)	74.4 ± 9.6 (47.9 - 106.6)
BA (m²ha-¹)	16.1 ± 4.6 (0.5 - 42.9)	40.6 ± 18.4 (0.1 - 158.8)	22 ± 12.2 (1.1 - 59.7)	9.8 ± 6.4 (0 - 59.2)	15.6 ± 7.6 (0.5 - 38.5)
Tree density (trees ha ⁻¹)	43.6 ± 12.4 (2 - 123.3)	81.5 ± 38.9 (1.2 - 354.6)	54.5 ± 33 (2.5 - 170.6)	28.6 ± 20.3 (0 - 294.1)	35.4 ± 15.6 (1.8 - 91.4)
SDI (metric)	209.2 ± 58.2 (7.5 - 564.6)	494.4 ± 222.3 (2.2 - 1987.5)	273.7 ± 151.9 (15.4 - 710.4)	128.5 ± 82.5 (0.1 - 849.1)	192 ± 90 (6.9 - 449.5)
Relative SDI (%)	22 ± 6.1 (0.7 - 62.6)	42.5 ± 18.5 (0.2 - 146.2)	25.4 ± 13.3 (1.7 - 78.8)	14.1 ± 9 (0 - 83.3)	20 ± 9.5 (0.6 - 49.2)
% Pine (<i>Pinus</i>)	63.3 ± 16.4 (2.7 - 100)	34.5 ± 20.8 (0 - 100)	45.9 ± 31.1 (0 - 100)	94.9 ± 14.2 (0 - 100)	58.7 ± 19.8 (0 - 100)
% Fir (Abies)	24.1 ± 12.7 (0 - 97.3)	46 ± 26.8 (0 - 100)	24.7 ± 22.9 (0 - 100)	3.7 ± 12.2 (0 - 100)	4 ± 14.1 (0 - 100)

Results - Summary by Dataset

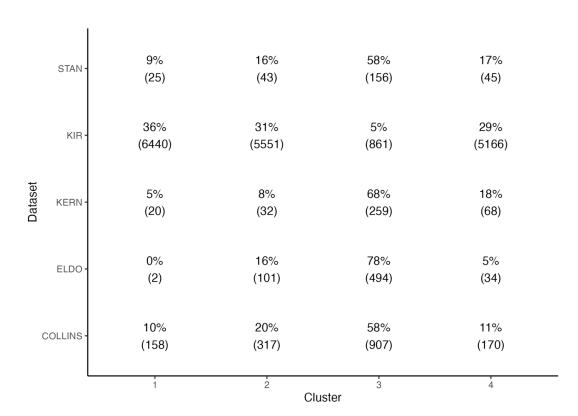
Results - Analysis Choices

- Low-BA Sample Removal
 - Variable Amount by Dataset
 - Increased Means except QMD
- Minimum Diameter Increase
 - Variable Amount by Dataset
 - Increased QMD, Decreased TPH, Negligible on BA & Relative SDI
- SDI Ratio
 - Small Effect


Results - Clustering

Cluster Differentiation

 Pine Fraction, Competition & Stocking, QMD


Clusters

- 1: low stocking, high pine, lower QMD
- 4: low stocking, high pine, higher QMD
- 2: moderate stocking, high pine
- 3: moderate stocking, low pine

Results - Clustering

- California Datasets vs. KIR
 - Cluster 3
 - Shared Membership

Conclusions - QQ Data Synthesis

Structure & Composition

• Restates findings of large trees & low densities in historical forests, with variability across landscape

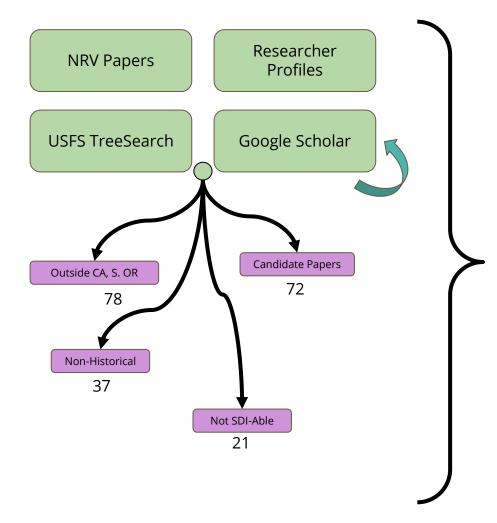
1. Analysis Choices

- Removal of Low-BA areas affects values of density, stocking, competition, but not tree size
- Higher minimum diameter limits affect tree size and density, but not stocking or competition
- Traditional SDI calculation likely overestimates competition 2-4%

1. Clustering

- Pine fraction differentiates KIR from California datasets
- However, common structure and composition types found across Sierras into Southern Cascades in Oregon

Applied Historical SDI

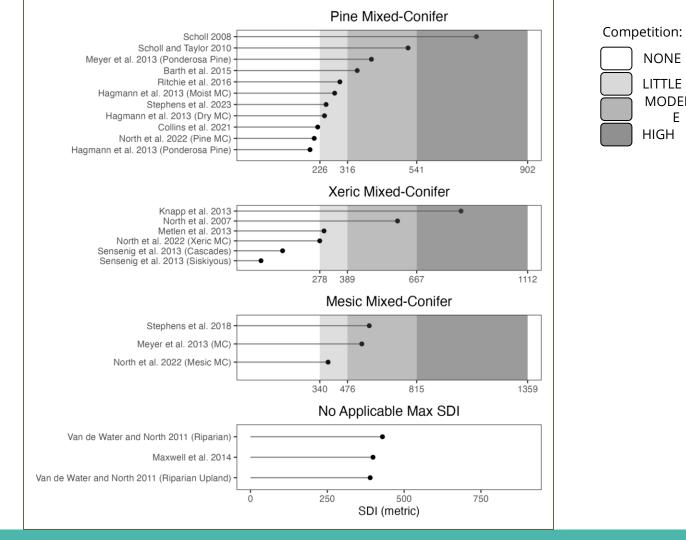

- 1. What were historical levels of competition and stocking in California & how do they compare to CA Forest Practice Rules stocking standards?
 - Literature Search → Summary Table

- 1. What stocking levels are private forestland owners managing to?
 - CalTREES Plan Review

- 1. What would a silvicultural system informed by historical stocking levels look like?
 - Forest Vegetation Simulator Modeling (FVS)

Literature Search

- California & Southern Oregon
 - Montane forests
- Peer-reviewed + gray literature (agency publications, theses)
- "SDI-Able"
- Historical (~pre-1940s)

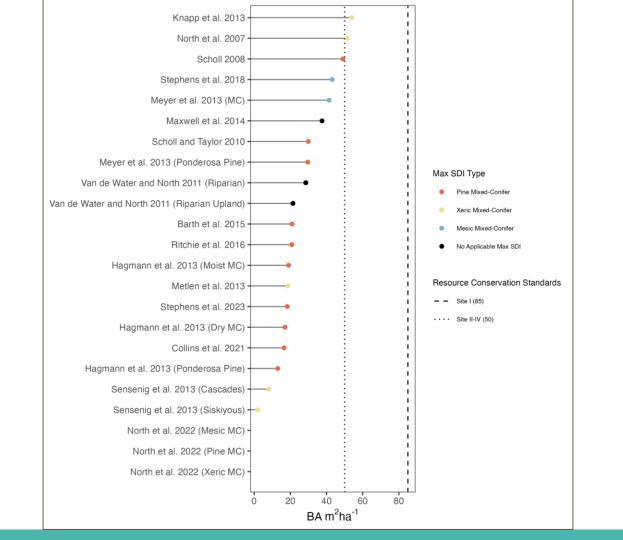


Final Papers:

- 16 Studies
 - 23 Study-Subtype

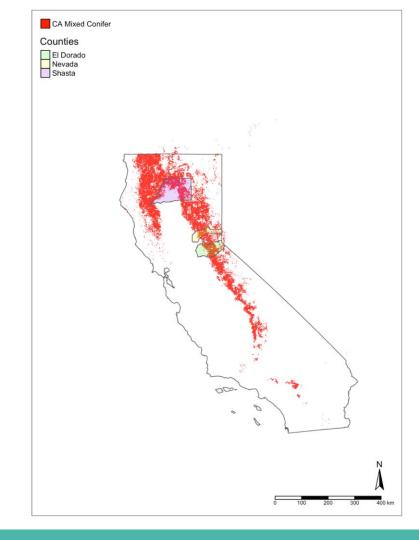
Notable Exclusions:

- Not Visualized
 - Collins et al. 2015
 - Stephens et al. 2015
 - o Taylor 2004
 - Taylor et. al 2014
- Wieslander VTM
- GLO Witness Tree
 - Baker 2014
 - Knight et al. 2020
- Sudworth Plots
- Lieberg 1902



NONE

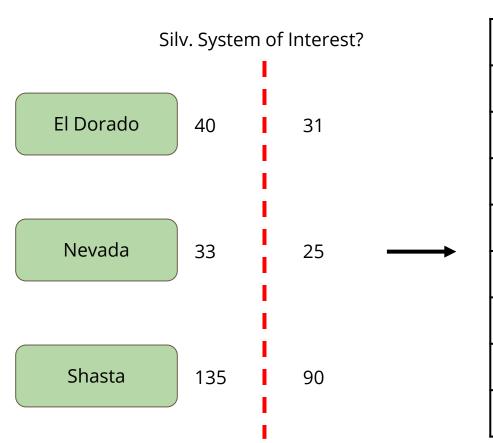
LITTLE


HIGH

MODERAT

CalTREES Plan Review

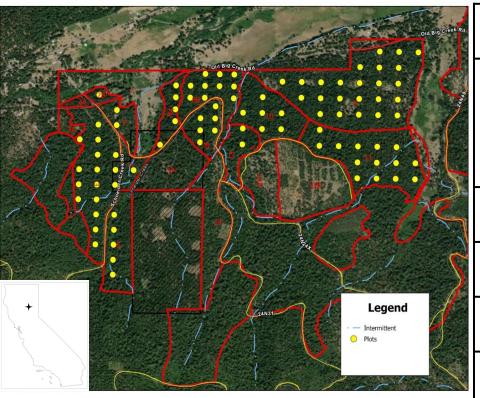
- El Dorado, Nevada, and Shasta Counties
- 2018-2023

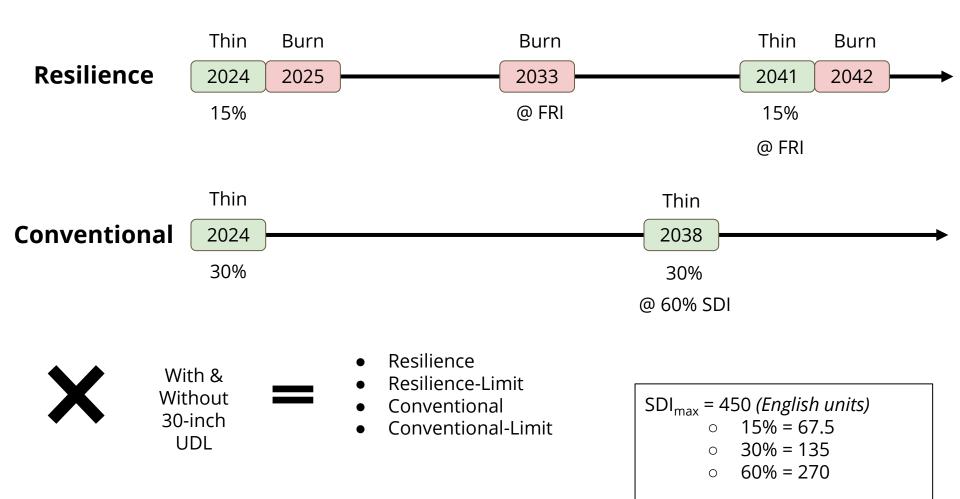

CalTREES Plan Review

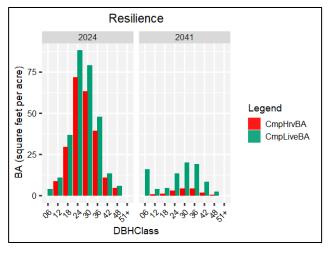
Plan Type

- (+) Timber Harvest Plan, Program Timber Harvest Plans, Nonindustrial Timber
 Management Plans, Working Forest Management Plans
- (-) Emergencies (Fuel Hazard Reduction, S.O.D., Salvage), Exemptions (Drought, Disease,
 Fire Prevention, Utility right-of-way, Structure Protection, etc.)

Silvicultural Methods


- (+) Selection, Group Selection, Variable Retention, Seed Tree Seed Step, Shelterwood Seed Step, Commercial Thin, Sanitation Salvage
- (-) Clearcut, Seed Tree Removal Step, Shelterwood Removal Step, Plantation, Conversion to Non-Forest, Road right-of-way, Non-Harvest

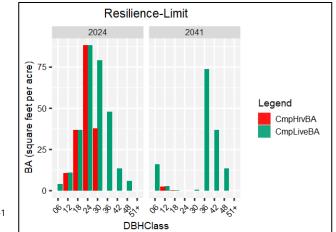

System	Mean Acreage	Count "Above"	Count "Below"
Alternative	242.75	0	1
Commercial Thinning	287.73	0	7
Group Selection	1023.65	6	0
Seed Tree Seed Step	29.54	0	0
Selection	181.81	15	0
Shelterwood Seed Step	20.00	0	0
Transition	43.00	0	0
Variable Retention	21.00	0	0


FVS Modeling

- Conventional vs. Resilience
- 30-inch Upper Diameter Limit
- Preliminary Model

Weather Variable	Value	Fuel Size Class	Fuel Moisture
Weather Stations	Quincy (#040910) ,	1-hour fuel moisture	1.0%
(2000-2010)	Pierce (#040915), and Cashman (#040916)	10-hour fuel moisture	2.0%
Season	June 1 to September 15	100-hour fuel moisture	5.5%
Temperature (F)	93°	1,000-hour fuel moisture	6.0%
Fuel Model Choice	TU5	Herbaceous fuel moisture	29%
Source: Ryan Tompkins		Woody fuel moisture	69%

1st Entry:

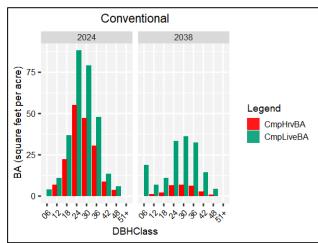

- 53,894 BdFt acre⁻¹
- 17% rSDI

2nd Entry:

- 4,104 BdFt acre⁻¹
- 27% rSDI

Growth:

 593 BdFt acre-1 yr-1



1st Entry:

- 35,153 BdFt acre-1
- 29% rSDI

2nd Entry:

- 307 BdFt acre-1 42% rSDI
- Growth:
 - 335 BdFt acre⁻¹ yr⁻¹

1st Entry:


- 41,153 BdFt acre⁻¹
- 32% rSDI

2nd Entry:

- 7,145 BdFt acre⁻¹
- 47% rSDI

Growth:

• 568 BdFt acre⁻¹ yr⁻¹

1st Entry:

- 34,475 BdFt
- 30% rSDI

2nd Entry:

- 1,157 BdFt
- 47% rSDI

Growth:

400 BdFt acre⁻¹ yr⁻¹

Conclusions - Applied Historical SDI

1. Historical Levels of Stocking

- Low levels of competition and stocking across historical data sources
- Historical stocking below minimum standards in California Forest Practice Rules

1. Stocking Levels Used by Private Forestland Owners

Timber operations almost never manage at densities lower than stocking standards

1. Silvicultural System from Historical SDI Levels

- Timber growth & yield potentially feasible for historically-informed Resilience system, but constrained by upper diameter limit
- Regeneration management will be necessary & likely intensive

References

Barth, Molly A. F., Andrew J. Larson, and James A. Lutz. 2015. "A Forest Reconstruction Model to Assess Changes to Sierra Nevada Mixed-Conifer Forest during the Fire Suppression Era." Forest Ecology and Management 354 (October): 104–18. https://doi.org/10.1016/j.foreco.2015.06.030.

Collins, Brandon M., Alexis Bernal, Robert A. York, Jens T., Stevens, Andrew Juska, and Scott L. Stephens, 2021, "Mixed-Conifer Forest Reference Conditions for Privately Owned Timberland in the Southern Cascade Range," Ecological Applications 31 (7): e02400. https://doi.org/10.1002/eap.2400.

Collins, Brandon M., Richard G. Everett, and Scott L. Stephens. 2011. "Impacts of Fire Exclusion and Recent Managed Fire on Forest Structure in Old Growth Sierra Nevada Mixed-Conifer Forests." Ecosphere 2 (4): art51. https://doi.org/10.1890/E511-00026.1.

Collins, Brandon M., Danny L. Fry, Jamie M. Lydersen, Richard Everett, and Scott L. Stephens. 2017. "Impacts of Different Land Management Histories on Forest Change." Ecological Applications 27 (8): 2475–86. https://doi.org/10.1002/eap.1622.

Collins, Brandon M., Jamie M. Lydersen, Richard G. Everett, Danny L. Fry, and Scott L. Stephens. 2015. "Novel Characterization of Landscape-Level Variability in Historical Vegetation Structure." Ecological Applications 25 (5): 1167–74. https://doi.org/10.1890/14-1797.1.

Hagmann, R. Keala, Jerry F. Franklin, and K. Norman Johnson. 2013. "Historical Structure and Composition of Ponderosa Pine and Mixed-Conifer Forests in South-Central Oregon." Forest Ecology and Management 304 (September): 492–504. https://doi.org/10.1016/j.foreco.2013.04.005. Hagmann, R. Keala, Debora L. Johnson, and K. Norman Johnson. 2017. "Historical and Current Forest Conditions in the Range of the Northern Spotted Owl in South Central Oregon, USA." Forest Ecology and Management 389 (April): 374–85. https://doi.org/10.1016/j.foreco.2016.12.029. Hagmann, R. Keala, Andrew G. Merschel, and Matthew J. Reilly. 2019. "Historical Patterns of Fire Severity and Forest Structure and Composition in a Landscape Structured by Frequent Large Fires: Pumice Plateau Ecoregion, Oregon, USA." Landscape Ecology 34 (3): 551–68. https://doi.org/10.1007/s10980-019-00791-1.

Knapp, Eric E., Carl N. Skinner, Malcolm P. North, and Becky L. Estes. 2013. "Long-Term Overstory and Understory Change Following Logging and Fire Exclusion in a Sierra Nevada Mixed-Conifer Forest." Forest Ecology and Management 310 (December): 903-14. https://doi.org/10.1016/i.foreco.2013.09.041.

LANDFIRE, Earth Resources Observation and Science Center (EROS), 20220131. "LANDFIRE 2020 Elevation (Elev) CONUS." Data.raster digital data. LANDFIRE, Earth Resources Observation and Science Center (EROS), U.S. Geological Survey. 20220131. https://landfire.gov/metadata/lf2020/CONUS/LC20 Elev 220.html#7.

Maxwell, R. Stockton, Alan H. Taylor, Carl N. Skinner, Hugh D. Safford, Rachel E. Isaacs, Catherine Airey, and Amanda B. Young, 2014. "Landscape-Scale Modeling of Reference Period Forest Conditions and Fire Behavior on Heavily Logged Lands." Ecosphere 5 (3): art32. https://doi.org/10.1890/ES13-00294.1.

Metlen, Kerry, Derek Olson, and Darren Borgias, 2013, "Forensic Forestry; History Lessons for a Resilient Future,"

Meyer, Marc D. Greg L Schroer, and Burt Stalter, 2013. "Methods of Cutting' Ecological Inventory Draft Report,"

North, Malcolm, Jim Innes, and Harold Zald. 2007. "Comparison of Thinning and Prescribed Fire Restoration Treatments to Sierran Mixed-Conifer Historic Conditions." Canadian Journal of Forest Research 37 (2): 331-42. https://doi.org/10.1139/X06-236.

North, Malcolm P., Ryan E. Tompkins, Alexis A. Bernal, Brandon M. Collins, Scott L. Stephens, and Robert A. York. 2022. "Operational Resilience in Western US Frequent-Fire Forests." Forest Ecology and Management 507 (March): 120004. https://doi.org/10.1016/j.foreco.2021.120004. Ritchie, Martin W. 2016, "Multi-Scale Reference Conditions in an Interior Pine-Dominated Landscape in Northeastern California," Forest Ecology and Management 378 (October): 233-43, https://doi.org/10.1016/i.foreco.2016.07.017.

Scholl, Andrew E. 2008. "Understanding Mixed Conifer Forests in Yosemite National Park: An Historical Analysis of Fires Regimes and Vegetation Dynamics." ProQuest Dissertations and Theses, Ph.D., United States -- Pennsylvania: The Pennsylvania State University, 304509630, ProQuest

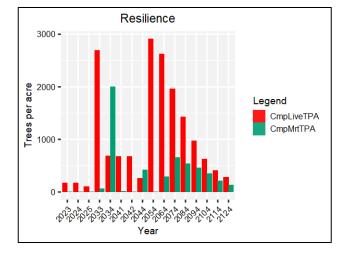
Dissertations & Theses Global. https://www.proquest.com/dissertations-theses/understanding-mixed-conifer-forests-yosemite/docview/304509630/se-2?accountid=14496.

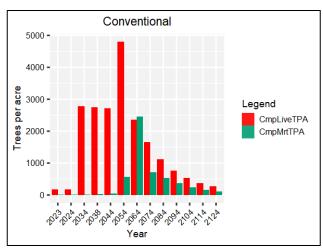
Scholl, Andrew E., and Alan H. Taylor. 2010. "Fire Regimes, Forest Change, and Self-Organization in an Old-Growth Mixed-Conifer Forest, Yosemite National Park, USA." Ecological Applications 20 (2): 362-80. https://doi.org/10.1890/08-2324.1.

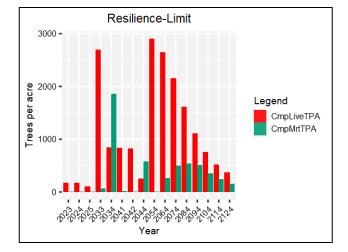
Sensenig, Thomas, John D. Bailey, and John C. Tappeiner. 2013. "Stand Development, Fire and Growth of Old-Growth and Young Forests in Southwestern Oregon, USA." Forest Ecology and Management 291 (March): 96–109. https://doi.org/10.1016/j.foreco.2012.11.006. Stephens, Scott L., Les Hall, Connor W. Stephens, Alexis A. Bernal, and Brandon M. Collins. 2023. "Degradation and Restoration of Indigenous California Black Oak (Quercus Kelloggii) Stands in the Northern Sierra Nevada." Fire Ecology 19 (1): 12. https://doi.org/10.1186/s42408-023-00172-9.

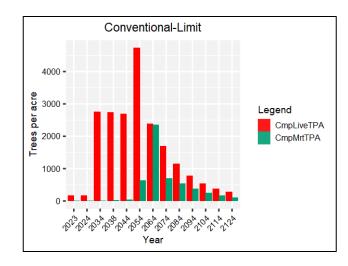
Stephens, Scott L., Jamie M. Lydersen, Brandon M. Collins, Danny L. Frv, and Marc D. Meyer, 2015. "Historical and Current Landscape-Scale Ponderosa Pine and Mixed Conifer Forest Structure in the Southern Sierra Nevada." Ecosphere 6 (5): 1–63. https://doi.org/10.1890/ES14-00379.1. Stephens, Scott L., Jens T. Stevens, Brandon M. Collins, Robert A. York, and Jamie M. Lydersen. 2018. "Historical and Modern Landscape Forest Structure in Fir (Abies)-Dominated Mixed Conifer Forests in the Northern Sierra Nevada, USA." Fire Ecology 14 (2): 7. https://doi.org/10.1186/s42408-018-0008-6.

Van de Water, Kip, and Malcolm North. 2011. "Stand Structure, Fuel Loads, and Fire Behavior in Riparian and Upland Forests, Sierra Nevada Mountains, USA; a Comparison of Current and Reconstructed Conditions." Forest Ecology and Management, Environmental Stress and Forest Ecosystems: Case studies from Estonia, 262 (2): 215-28. https://doi.org/10.1016/j.foreco.2011.03.026.


Thanks! Questions?


Acknowledgements:


- **Funding:** Board of Forestry, Effectiveness Monitoring Committee, #2022-004
- **Advisor & Committee:** Dr. Brandon Collins, Dr. Rob York, Dr. Scott Stephens
- Family & Friends <3


Extra Slides →

System	Minimum Basal Area by Site Class			
	I	11	III	IV/V
Commercial thin	125 or 100*	100 or 75*	75	50
Selection	100	75	75	50
Group Selection	100	75	75	50
Transition	85	50	50	50
Fuel Break / Defensible Space	Resource Conservation Minimums			
Sanitation Salvage	Resource Conservation Minimums			
Resource Conservation Minimums	85	50	50	50

