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Abstract. Fire suppression and exclusion, the historically dominant paradigm of fire management, has
resulted in major modifications of fire-dependent ecosystems worldwide. These changes are partially cred-
ited with a recent increase in wildfire number and extent, as well as more extreme fire behavior. Fire and her-
bivory historically interacted, and research has shown that the interaction creates a unique mosaic of
vegetation heterogeneity that each disturbance alone does not create. Because fire and grazing have largely
been decoupled in modern times, the degree to which the interaction affects fuels and fire regimes has not
yet been quantified. We evaluated effects of fire-only and pyric herbivory on rangeland fuels and fire behav-
ior simulated using BehavePlus at four sites across the southern Great Plains. We predicted patches managed
via pyric herbivory would maintain lower fuel loads, and less intense simulated fire behavior than fire alone.
We found that time since fire was a significant predictor of fuel loads and simulated fire behavior characteris-
tics at all sites. Fuel loads and simulated fire behavior characteristics (flame length and rate of spread)
increased with increasing time since fire in all simulated weather scenarios. Pyric herbivory mediated fuel
accumulation at all sites. Mean fuel loads in fire-only treatments exceeded 5000 kg/ha within 24 months, but
pyric herbivory treatments remained below 5000 kg/ha for approximately 36 months. Simulated flame
lengths in fire-only treatments were consistently higher (up to 3 9 ) than in pyric herbivory treatments. Simi-
larly, fire spread rates were higher in fire-only than in pyric herbivory treatments in all simulated weather
conditions. Although all sites had potential to burn in the most extreme weather conditions, pyric herbivory
reduced fuel accumulations, flame lengths, and rates of spread across all weather patterns simulated. These
reductions extended the amount of time standard wildland firefighting techniques remain effective. There-
fore, incorporating pyric herbivory into fuel management practices, in areas of high herbaceous productivity,
increases the effectiveness of fuel treatments.
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INTRODUCTION

Fire and grazing have occurred on every vege-
tated continent for millions of years and are two

of the primary factors that influence most aspects
of the dominant ecosystems of the world (Bond
and Keeley 2005, Bowman 2005, Archibald et al.
2013). Historically, these disturbances interacted
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with one another, and in addition to weather and
climate, shaped grassland and savanna land-
scapes worldwide (Fuhlendorf and Engle 2001,
van Langevelde et al. 2003, Bond and Keeley
2005, Anderson 2006). The fire–grazing interac-
tion, termed “pyric herbivory,” created a shifting
mosaic of vegetation types, including vegetation
that varied in amount and type of grazing as well
as frequency and intensity of fire (Fuhlendorf and
Engle 2001, Fuhlendorf et al. 2009). Pyric her-
bivory and its effects were undoubtedly influ-
enced by climate, which determined how rapidly
fuels accumulated (Govender et al. 2006, Fule
et al. 2012) in addition to the structure (e.g.,
canopy cover, species composition, height) of
those fuels (Lane et al. 2000). Weather not only
influences fuel accumulation via precipitation
(Harcombe et al. 1993, Hsu and Adler 2014), but
also impacts fire occurrence and intensity (e.g.,
flame length and rate of spread) through parame-
ters such as relative humidity and wind speed
(Ellair and Platt 2013, Platt et al. 2015).

Prior to European settlement, the interaction
between fire and grazing in the North American
Great Plains was critical to landscape structure
and function (Fuhlendorf and Engle 2001, Fuhlen-
dorf et al. 2009). When European explorers first
encountered the Great Plains, they reported the
indigenous peoples frequently used fire to attract
grazing animals such as American bison (Bison
bison) and elk (Cervus canadensis), among other
reasons (Pyne 2010). Management of North Amer-
ican rangelands during the late nineteenth and
early twentieth centuries centered on practices that
encouraged fire prevention and suppression (Fuh-
lendorf and Engle 2001, 2004). As grazing pressure
from domestic livestock increased, fine fuels
decreased, limiting the frequency and/or intensity
of fires (Briggs et al. 2005, Van Auken 2009).
Moreover, as permanent settlement increased, fire
suppression efforts increased, effectively leading
to exclusion of fire from the landscape. Subse-
quent decades of fire exclusion, coupled with
heavy uniform grazing by domestic livestock, in
addition to a host of other environmental and
anthropogenic factors, contributed to extensive
transformation of grasslands into shrublands and
woodlands (Archer et al. 2017). This transition,
primarily caused by the decoupling of fire and
grazing (Fuhlendorf et al. 2009), shifted fuel struc-
ture allowing large, catastrophic wildfires.

Since 1985, wildfire activity in the Great Plains
has increased, both in number of fires and in
total area burned (Donovan et al. 2017). Over the
past 15 years alone (2002–2016), wildfires have
burned more than 41 million hectares in the
southern Great Plains (NIFC 2017). In addition to
loss of property and human life, wildfires can
affect plant and animal community dynamics
and contribute to invasions of non-native species
as well as extinctions (Foxcroft et al. 2010, Abom
et al. 2016, Potvin et al. 2017). This increasing
frequency of wildfires emphasizes the need for
implementation of effective fuel management
techniques. Fuel management treatments are
aimed at reducing wildland fire intensity, which
has direct implications on the success of standard
wildland firefighting techniques (NWCG 2014).
Fire severity has also been linked to recovery of
ecosystems after the occurrence of a fire (Gonza-
lez et al. 2015).
After burning, it is often the policy of federal

and state agency managers to remove grazing
animals for two years to allow recovery of the
vegetative community (USDI-BLM 2014). How-
ever, recent research has demonstrated that an
extended recovery period is not necessary
(Augustine et al. 2010, Gates et al. 2017, Clark
et al. 2018) and is clearly a departure from how
fire and grazing historically interacted (Fuhlen-
dorf et al. 2012). This significant departure from
disturbance patterns under which Great Plains
flora and fauna developed is a concern for biodi-
versity, perhaps most notably that of grassland
birds (Holcomb et al. 2014, Hovick et al. 2014).
Moreover, due to rapid recovery of herbaceous
biomass in the southern Great Plains, deferral of
grazing after fire may limit utility of prescribed
fire as a fuels reduction treatment unless annual
treatment of large areas is performed. However,
such treatment frequency tends to reduce land-
scape heterogeneity inherent in this region, with
an added consequence of reducing biodiversity
(Fuhlendorf et al. 2006, 2017).
An alternative rangeland management para-

digm that focuses on the interaction of fire and
grazing, termed pyric herbivory, has recently
been demonstrated as a method of maintaining
or restoring heterogeneity of vegetation both
temporally and spatially (Fuhlendorf and Engle
2001, Fuhlendorf et al. 2012). Pyric herbivory cre-
ates a shifting mosaic of vegetation structure and
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composition across a landscape as a result of the
interaction between fire and grazing that is
unique from the effects of fire or grazing in isola-
tion (Fuhlendorf and Engle 2001, Fuhlendorf
et al. 2009). Large herbivores (e.g., bison, cattle)
preferentially forage in the most recently burned
patches on a landscape when such selection is
allowed (Allred et al. 2011, 2013). Intense local-
ized selective herbivory maintains these patches
in a state of short vegetative regrowth and limits
the accumulation of biomass and fine dead
material necessary to fuel a fire. Surrounding
areas of greater time since fire are only sparsely
grazed; thus, fuels for subsequent fires accumu-
late. The pyric herbivory process is analogous to
the interaction that occurred between fire and
grazing prior to European settlement (Fuhlen-
dorf and Engle 2001, 2004, Fuhlendorf et al.
2009, 2017, Allred et al. 2011). Furthermore, it
has been shown to maintain or improve biodi-
versity of vegetation (Collins and Smith 2006,
Collins and Calabrese 2012), invertebrates (Cook
and Holt 2006, Engle et al. 2008), and a host of
vertebrate assemblages (Danley et al. 2004, Cop-
pedge et al. 2008, Fuhlendorf et al. 2010, Green
et al. 2015, Hovick et al. 2015). In addition to
the numerous reported conservation benefits,
pyric herbivory benefits livestock production
(Limb et al. 2011, Polito 2012, Allred et al. 2014,
Scasta et al. 2015).

Our goal was to determine how the restoration
of the complex fire–grazing interaction, which
can maintain grazing productivity and biodi-
versity (Fuhlendorf et al. 2009), affects fuel
management across highly variable climatic con-
ditions. We developed a large-scale experiment
capable of comparing fire-only treatments
(ungrazed) to pyric herbivory treatments across
four sites throughout the southern Great Plains
and used these data to conduct modeling
experiments with BehavePlus 5.0 (Heinsch and
Andrews 2010). Our objectives were to (1) deter-
mine how time since fire and the fire–grazing
interaction affect rangeland fuel accumulation in
pyric herbivory vs fire-only treatments; (2) eval-
uate the effect of pyric herbivory on simulated
fire behavior characteristics that impact suppres-
sion capabilities; and (3) determine whether
pyric herbivory increases the length of time stan-
dard wildland firefighting techniques are effec-
tive compared to fire-only treatments across

variable weather patterns. Our findings docu-
ment the potential benefits to fuel management
using pyric herbivory compared to fire-only
management.

STUDY SITES AND METHODS

Study sites and design
Our study was conducted at four sites across

the southern Great Plains (Table 1). All sites were
managed using fire to promote spatial and tem-
poral heterogeneity across the landscape. Sites
were chosen on the basis of having an active pre-
scribed fire program, with preference for those
already incorporating pyric herbivory into the
management regime. Sites included the Tallgrass
Prairie Preserve and Packsaddle Wildlife Man-
agement Area (WMA) in Oklahoma, and the
Aransas National Wildlife Refuge (NWR) and
the Attwater’s Prairie-Chicken NWR in Texas
(Table 1). Tallgrass Prairie Preserve, owned by
The Nature Conservancy, consists of 16,000 ha
dominated by tallgrass prairie species, with
approximately one-third burned annually. Pack-
saddle WMA is comprised of 7900 ha and is
owned by the Oklahoma Department of Wildlife
Conservation. The site is dominated by shinnery
oak (Quercus havardii) and mixed-grass species in
the eastern portion, with the western portion
consisting of sand sagebrush (Artemisia filifolia)
and mixed-grass species, and approximately
2500 ha is burned annually. Attwater’s Prairie-
Chicken NWR is owned by U.S. Fish & Wildlife
Service and comprised of 4200 ha of coastal
prairie dominated by tallgrass species, with
about one-fourth burned annually. Aransas
NWR is comprised of 46,000 ha of coastal prairie
dominated by gulf cordgrass (Spartina spartinae)
interspersed with areas of live oak (Quercus vir-
giniana). Approximately 4300 ha of Aransas
NWR are burned annually. Burns were planned
and executed by management personnel at each
site according to each location’s management
goals and occurred in dormant and growing sea-
sons. In pyric herbivory treatments, cattle (Bos
taurus) were allowed unrestricted access to areas
with varying times since fire. All sites included
patches of fire-only and pyric herbivory treat-
ments, except for Aransas National Wildlife
Refuge, which was entirely fire-only. Our study
region consists primarily of vegetation that likely
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co-evolved with fire and grazing since the end of
the last glacial period (Fuhlendorf and Engle
2001, Anderson 2006). Vegetation ranged from
tallgrass prairie in the east to mixed-grass and
mixed-grass shrub vegetation further west. Cli-
mate ranged from humid subtropical into temper-
ate, and from mesic, highly productive systems in
the east to semi-arid in the west. Historically, the
southern Great Plains most likely had a mean fire
return interval of less than 6 yr due to the interac-
tion of climate, herbivory, topography, vegetation
type, and Native American influences (Frost 1998,
Guyette et al. 2012).

Sampling was performed from June 2014
through August 2016, at post-fire intervals
between 0 and 43 months since fire (MSF). Tran-
sects were randomly placed in both pyric her-
bivory and fire-only patches, with an attempt to
collect data at each study site from patches of
similar time since fire in both treatments. To
ensure that data collected were relevant to the
study objectives, sampling was limited to
patches comprised primarily of native vegeta-
tion. Eight fixed transects were randomly placed

in each patch within each study site. In an effort
to avoid differences caused by variability in fire
intensity resulting from differences between
headfires, backfires, and flank-fires (Bidwell
et al. 1990), transects were >50 m from patch
perimeters, roads, or natural fire breaks. Vegeta-
tion measurements were recorded at 5-m inter-
vals in 0.25-m2 plots along each transect to
quantify fuel properties within each patch. Fuels
measurements included aboveground biomass
(fuel load in g), fuel bed depth (cm), percent
cover of 1-h (diameter <6.4 mm, including
dormant/dead fine herbaceous), 10-h woody
(diameter 6.4–25.4 mm), and 100-h (diameter
25.4–76.2 mm) woody fuels, litter, and bare
ground. To measure aboveground biomass, veg-
etation along each transect was clipped and
oven-dried at 45°C to a stable weight. Woody
fuels in the 10-h and 100-h class were hand-sepa-
rated and weighed apart from 1-h fuels and lit-
ter. To avoid artificially altering future vegetation
measurements along transects, clippings were
taken from five 0.25-m2 plots parallel to each
transect at a distance of 10 m away.

Table 1. Summary description of study sites (fuel model) sorted by plant community, grazing species, climate
(growing season length; GS), mean annual precipitation (MAP), and physical characteristics (size, ownership;
owner).

Site (fuel model)
by plant

community Size (ha) State Owner Grazers
MAP
(cm)

GS
(d)

Dominant
herbaceous
vegetation

Dominant
woody

vegetation Refs

Gulf coastal
prairie
Aransas
NWR (gr9)

46,000 TX USFWS None 105 338 Schizachyrium
scoparium,
Sorghastrum nutans,
Spartina spartinae

Prosopis
glandulosa,
Quercus
virginiana

USFWS
(2010a)

Attwater’s
Prairie-Chicken
NWR (gr9)

4200 TX USFWS Bos
taurus

111 251 Schizachyrium scoparium,
Sorghastrum nutans,
Panicum virgatum

NA USFWS
(2010b)

Shinnery oak
Packsaddle
WMA (gs2)

7900 OK ODWC Bos
taurus

66 198 Schizachyrium scoparium,
Andropogon gerardii,
Bouteloua curtipendula

Quercus
havardii

Carroll
et al.
(2017)

Sand sagebrush
Packsaddle
WMA (gs2)

7900 OK ODWC Bos
taurus

66 198 Schizachyrium scoparium,
Andropogon gerardii,
Bouteloua curtipendula

Artemisia
filifolia

Carroll
et al.
(2017)

Tallgrass prairie
Tallgrass
Prairie
Preserve (gr9)

16,000 OK TNC Bos taurus,
Bison
bison

117 203 Andropogon gerardii,
Schizachyrium scoparium,
Sorghastrum nutans

Quercus
marilandica,
Q. stellata

Hamilton
(2007)

Note: NWR, National Wildlife Refuge; ODWC, Oklahoma Department of Wildlife Conservation; TNC, The Nature
Conservancy; USFWS, U.S. Fish & Wildlife Service; WMA, Wildlife Management Area.
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Fire simulations
Using fuels data collected from each study site

to simulate fire behavior in the BehavePlus 5.0
fire modeling software program (Heinsch and
Andrews 2010), we were able to accomplish two
objectives. First, we evaluated the impacts of
pyric herbivory on the relationship between time
since fire and simulated fire behavior characteris-
tics. Additionally, we examined the potential for
pyric herbivory to extend the time period in
which standard wildland firefighting techniques
remain effective for fire suppression versus fire-
only treatments. BehavePlus allows users to
model fire behavior characteristics resulting from
user-defined fuel and environmental parameters.
Surface fire behavior characteristics (flame
length, rate of spread) are calculated by the SUR-
FACE module in BehavePlus using Rothermel’s
(1972) fire spread model. The SURFACE module
allows users to select from 53 distinct fuel models
representing different vegetation types (Scott
and Burgan 2005). Users can also customize
models to reflect site-specific fuel characteristics.

Following the approach of Twidwell et al.
(2016), we customized dynamic fuel models to
simulate fire behavior in BehavePlus. Dynamic
fuel models characterize predictable changes in
fuel properties resulting from changes in environ-
mental conditions and transition live vegetation
into available fuel using fuel curing scenarios. To
develop fuel models for simulation of fires at our
study sites, we used the fuel model most similar
to each study site to initialize pre-defined inputs.
Fuels data (e.g., fuel load, fuel bed depth) from
field measurements were used in place of pre-
defined values before running each model (Scott
and Burgan 2005). To capture the range of varia-
tion inherent in southern Great Plains fuels, we
simulated scenarios for each transect (n = 638)
sampled at each study site. Simulations included
a variety of weather scenarios ranging from
extreme to mild fire weather. Weather scenarios
included fuel moisture values from 5% to 35%,
and low (16 km per h) and high (40 km per h)
wind speeds, for a total of 8932 simulations.
Inputs for surface area/volume ratio and fuel heat
content used the pre-defined values for the fuel
model. Flame length and rate of spread output
were compiled, and temporal changes in these
characteristics for pyric herbivory and fire-only
treatments were analyzed. To establish thresholds

of fire suppression effectiveness, we used values
determined by the National Wildfire Coordinat-
ing Group to be relevant to standard firefighting
techniques (NWCG 2014). These techniques
include heavy equipment as well as aerial meth-
ods and become ineffective when flame lengths
reach more than 3.4 meters. Lower critical thresh-
olds of effectiveness are also recognized—at
1.4 m flame lengths, hand tools become ineffec-
tive; at 2.4 m flame lengths, control efforts at the
head of the fire become ineffective (NWCG 2014).
In areas where fuels reduction treatments have
been implemented, prescribed fire has been used
more than other treatments (e.g., thinning, masti-
cation), and federal agencies indicate that pre-
scribed fire will be a dominant fuel management
option in this region (USDI-BLM 2014).

Analyses
Due to the unbalanced nature of our data, we

used a linear mixed-effects model (using lme4 in
the R statistical environment) to measure how
fire and grazing treatments affected biomass
(Bates et al. 2013, R Core Team 2016). Mixed-
effect models allow the evaluation of multi-level
nested designs including unbalanced data and
account for autocorrelation. Random effects
included transect nested within patch within site
in addition to collection year. Explanatory vari-
ables of interest were number of months since
fire (MSF), presence/absence of grazing (Graz-
ing), and the interaction between the two
(MSF 9 Grazing). For similar reasons, we used
linear mixed-effects models to measure how time
since fire, presence/absence of grazing, and their
interaction affected BehavePlus simulation out-
puts of flame lengths and spread rates. Because
biomass and other variables we measured were
input directly into our custom fuel models,
which treat these as drivers of fire simulations,
we did not include them as potential predictors
of BehavePlus output. Grazing intensity was cat-
egorized as light relative to the potential vegeta-
tion production at each study site, so grazing
was recorded as presence/absence rather than
continuous.

RESULTS

Preliminary analysis of response variables at
each study site suggested minimal differences
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among sites, so data from all sites were com-
bined. Time since fire was a significant predictor
of biomass and 1-h fuel loads across study sites,
and when grazing interacted with fires, the fuel
management lasted longer than when grazing
was excluded. Months since fire was a significant
predictor of biomass, which increased with MSF
(b = 2.19, r = 0.088, P < 0.001). The fire–grazing
interaction was also a significant predictor, with
a negative effect on biomass (b = �0.51,
r = 0.106, P < 0.001), suggesting that pyric her-
bivory reduced the influence of MSF. Biomass
was higher and accumulated more rapidly in
fire-only than in pyric herbivory patches (Fig. 1).
Months since fire was also a significant predictor
of percent cover of 1-h fuel (b = 0.110, r = 0.013,
P < 0.001), which was greater in fire-only than
pyric herbivory patches for up to 18 months after
fire (Fig. 2).

Following a trend similar to that of biomass and
1-h fuels, simulated flame lengths differed
between treatments (Fig. 3). Months since fire was
a significant predictor of flame length output for
all simulated weather conditions (Table 2). Pres-
ence of grazing failed to significantly predict flame
length in all except one weather scenario (low
wind, 5% fuel moisture; Table 2). The fire–grazing

interaction was a significant predictor of flame
length across all fuel moistures at high (40 km per
h) wind speeds, but not significant at fuel mois-
tures ≥20% at low wind speeds (16 km per h).
When simulating extreme weather conditions
(wind speed = 40 km per h, 5% fuel moisture),
flame lengths in pyric herbivory treatments did
not cross the 3.4 m threshold until approximately
8–9 MSF, compared to 3–4 months for fire-only
(Fig. 3). Under slightly less extreme weather con-
ditions (wind speed = 16 km per h, and 5% fuel
moisture), pyric herbivory maintained flame
lengths below 3.4 m for approximately 18 months
compared to 6 months for fire-only treatments
(Fig. 3).
In both scenarios, simulated flame lengths in

pyric herbivory treatments remained lower than
in fire-only patches. An even more drastic
decrease in flame lengths occurred as a result of
a shift in fire weather conditions typical of diur-
nal shifts in wind speed and moisture (reduction
in wind speed from 40 to 16 km per h paired
with an increase in fuel moisture from 5% to
10%). Moreover, this was most prominent in the
pyric herbivory treatments, as flame lengths in
fire-only treatments rose above 3.4 m at
6 months post-fire (Fig. 4). Overall, flame lengths

Fig. 1. Mean aboveground biomass (kg per ha) with increasing months since fire across four sites in the south-
ern Great Plains (2014–2016) for fire-only (solid orange line) and pyric herbivory (dashed black line) treatments.
Shaded areas indicate 95% confidence intervals (n = 3190).

 ❖ www.esajournals.org 6 January 2019 ❖ Volume 10(1) ❖ Article e02578

STARNS ET AL.



Fig. 2. Mean cover of 1-h fuels (%) with increasing months since fire across four sites in the southern Great
Plains (2014–2016) for fire-only (solid orange) and pyric herbivory (dashed black) treatments. Shaded areas indi-
cate 95% confidence intervals (n = 3190).

Fig. 3. Mean simulated flame length (m) with increasing months since fire across four sites in the southern
Great Plains (2014–2017) for fire-only (top) and pyric herbivory (bottom) treatments. The green (dot-dash) hori-
zontal line indicates the maximum threshold (1.4 m) at which hand tools are effective for fighting wildland fires.
The blue (long dash) horizontal line indicates flame length at which aerial and heavy equipment effectiveness
diminishes (2.4 m). The red (solid) horizontal line indicates the threshold at which all standard wildland fire-
fighting techniques become ineffective (3.4 m). Top panel depicts mean flame length at high (40 km per h) and
low (16 km per h) wind speed scenarios at 5% fuel moisture for fire-only treatments (n = 336). Bottom panel
depicts mean flame length at high (40 km per h) and low (16 km per h) wind speed scenarios at 5% fuel moisture
for pyric herbivory treatments (n = 302).
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in pyric herbivory treatments were consistently
lower than in fire-only treatments with a similar
MSF. Pyric herbivory also influenced how flame
lengths responded to simulated changes in
weather conditions. In extreme (40 km per h
winds and 5% fuel moisture) scenarios, 58% of
pyric herbivory simulations and 79% of fire-only
simulations yielded flame lengths greater than
3.4 m. In low wind speed (16 km per h)–10% fuel
moisture simulations, the percentage of flame
lengths above 3.4 m were reduced to 20% and
55% in pyric herbivory and fire-only, respectively
(Fig. 5).

As with flame lengths, MSF was a significant
predictor of spread rates for all simulations
(Table 2). In contrast, the fire–grazing interaction

was only significant for two fuel moisture scenar-
ios, both at high wind speed. Presence of grazing
was a significant predictor of spread rate in all
scenarios except these two (Table 2). Spread rates
also differed between treatments, overall lower
in pyric herbivory than in fire-only treatments
with similar MSF (Fig. 6). Spread rates in fire-
only treatments reached 3 meters per second
after approximately 6–8 MSF in our most
extreme simulated weather conditions, while
spread rates in pyric herbivory treatments did
not reach 3 m per second until approximately 30
MSF. These results also underscore the impor-
tance of weather conditions on fire behavior, and
that large, fast-moving fires may occur in any
fuels during extreme fire weather events.

Table 2. Beta coefficients, standard errors, and P-values for main effects of time since fire (MSF), grazing
(presence/absence), and their interaction given different wind speeds and dead fuel moisture content (FMC).

Variable
Interaction effects
(MSF 9 Grazing) Main effects (MSF) Main effects (Grazing)

Wind (km per h) FMC (%) b r P b r P b r P

Flame Length
40 5 �0.097 0.035 <0.01 0.406 0.024 <0.001 �2.166 1.325 0.11

10 �0.085 0.029 <0.01 0.333 0.021 <0.001 �1.723 1.090 0.12
15 �0.080 0.026 <0.01 0.030 0.018 <0.001 �1.466 0.969 0.13
20 �0.077 0.024 <0.01 0.276 0.017 <0.001 �1.344 0.903 0.15
25 �0.072 0.023 <0.01 0.253 0.016 <0.001 �1.233 0.836 0.15
30 �0.073 0.020 <0.001 0.219 0.014 <0.001 �0.825 0.725 0.26
35 �0.064 0.013 <0.001 0.150 0.009 <0.001 �0.273 0.490 0.58

16 5 �0.039 0.017 <0.05 0.196 0.013 <0.001 �1.064 0.657 <0.05
10 �0.029 0.014 <0.05 0.160 0.011 <0.001 �0.914 0.543 0.1
15 �0.026 0.013 <0.05 0.142 0.009 <0.001 �0.821 0.483 0.1
20 �0.011 0.015 0.06 0.132 0.009 <0.001 �0.800 0.452 0.09
25 �0.020 0.011 0.08 0.121 0.008 <0.001 �0.750 0.423 0.08
30 �0.016 0.010 0.11 0.102 0.007 <0.001 �0.658 0.365 0.08
35 �0.010 0.007 0.15 0.073 0.005 <0.001 �0.522 0.271 0.06

Rate of Spread
40 5 �0.006 0.020 0.78 0.147 0.016 <0.001 �1.868 0.641 <0.01

10 �0.013 0.016 0.43 0.118 0.012 <0.001 �1.371 0.502 <0.05
15 �0.014 0.013 0.29 0.099 0.010 <0.001 �1.098 0.414 <0.05
20 �0.014 0.012 0.24 0.088 0.008 <0.001 �0.953 0.367 <0.05
25 �0.011 0.010 0.28 0.073 0.007 <0.001 �0.802 0.309 <0.05
30 �0.019 0.008 <0.05 0.062 0.006 <0.001 �0.489 0.244 0.052
35 �0.018 0.004 <0.001 0.038 0.003 <0.001 �0.124 0.135 0.36

16 5 0.002 0.006 0.76 0.023 0.004 <0.001 �0.301 0.148 <0.05
10 0.005 0.004 0.21 0.019 0.003 <0.001 �0.337 0.110 <0.01
15 0.004 0.003 0.2 0.016 0.002 <0.001 �0.286 0.090 <0.01
20 0.004 0.003 0.19 0.014 0.002 <0.001 �0.258 0.079 <0.01
25 0.004 0.003 0.11 0.012 0.002 <0.001 �0.240 0.073 <0.01
30 0.003 0.002 0.23 0.011 0.002 <0.001 �0.189 0.060 <0.01
35 0.002 0.001 0.13 0.008 0.001 <0.001 �0.151 0.043 <0.01

Note: Bold text indicates significant results.
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DISCUSSION

We sought to determine the effect of pyric her-
bivory on grassland fuel management across a
wide range of weather conditions. We found that
pyric herbivory reduced fuel loads and simu-
lated fire behavior characteristics in all weather
conditions simulated. While all fuel loads were
susceptible to fire in the most extreme weather
events, simulated fire behavior in patches treated
with pyric herbivory was less extreme than in
fire-only patches. Less extreme fire behavior not
only improves effectiveness of suppression tac-
tics, but also decreases fire severity. Therefore,
incorporating pyric herbivory into rangeland
management practices has potential to reduce
the occurrence and impacts of high-severity
wildfires which can cause changes in dominant
vegetation types, sometimes allowing increases
in exotic species (Forrestel et al. 2011, McDonald

and McPherson 2011, Ghermandi et al. 2013,
Guthrie et al. 2016). Our data address a knowl-
edge gap described by Limb et al. (2016), specifi-
cally that few fire studies consider how time
since fire affects the systems being studied, and
even fewer look at impacts of the pyric herbivory
interaction (Fuhlendorf et al. 2011, Limb et al.
2016).
We found that fuel loads increased rapidly

with increasing MSF, but total fuel accumulation
and rate of accumulation were mediated by pyric
herbivory. Our results are consistent with find-
ings that time since fire was a determinant of fuel
loads in African savannas, and that increasing
time since fire increased fire risk, which was
related to biomass and fuel moisture content
(Govender et al. 2006, Fernandes et al. 2012).
Additionally, recent work has determined that
biomass in grazing exclosures in African savanna
returned to pre-fire levels within a single

Fig. 4. Changes in fire suppression capabilities in fire-only (top, n = 336) and pyric herbivory (bottom,
n = 302) treatments with increasing months since fire across four sites in the southern Great Plains (2014–2017).
Upper line for each treatment represents mean flame length simulated using extreme (40 km per h and 5% fuel
moisture) daytime conditions. Lower line for each treatment represents less extreme (16 km per h and 10% fuel
moisture) overnight conditions characteristic of the SGP. The green (dot-dash) horizontal line indicates the maxi-
mum threshold (1.4 m) at which hand tools are effective for fighting wildland fires. The blue (long dash) horizon-
tal line indicates flame length at which aerial and heavy equipment effectiveness diminishes (2.4 m). The red
(solid) horizontal line indicates the threshold at which all standard wildland firefighting techniques become inef-
fective (3.4 m). Shaded areas represent 95% confidence intervals. Changes in simulated weather conditions reflect
typical changes associated with nightfall in the southern Great Plains.
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growing season (Donaldson et al. 2018). Our
results indicate pyric herbivory regulates the rate
of accumulation of biomass compared to fire-only
treatments. This reduced rate of accumulation
helps to achieve fuel management objectives by
extending the amount of time standard wildland
firefighting techniques remain effective. The
importance of the fire–grazing interaction is high-
lighted by its role in determining rate of fuel accu-
mulation. In pyric herbivory treatments, simulated
fire behavior was such that standard techniques
remained effective for at least six months longer
than fire-only treatments and up to 36 months
post-fire, depending on weather conditions. In our
fire simulations, pyric herbivory treatments con-
sistently produced lower flame lengths and rates
of spread than fire-only treatments. Rates of spread
increased rapidly during the first 12 months
post-fire along the same pattern as biomass and
flame lengths, regardless of simulated weather

conditions. Our work supports the suggestion
that effectiveness of fuels reduction via fire-only
can be short-term (Fernandes and Botelho 2003)
and that extreme fire weather can overwhelm
effects of fuel treatments (McCarthy and Tolhurst
2001).
The differences we found between treatments

varied with simulated wind and fuel moisture
conditions. Fire behavior characteristics produced
by our most extreme wind and fuel moisture con-
ditions illustrate that uncontrollable fires are pos-
sible during periods of extreme fire weather
regardless of treatments. However, slight changes
in weather conditions can significantly improve
effectiveness of suppression efforts in areas trea-
ted using pyric herbivory. Similar interactions
between weather and time since fire were
reported in a study of fuel treatment effects on
wildfire severity, where fuels reduction treat-
ments showed the greatest benefit in evening and
overnight (Tolhurst and McCarthy 2016).
Fuels reduction burning (fire-only) has been

suggested as an effective method to reduce the
occurrence of wildfires (Butry 2009, North et al.
2012, Ager et al. 2014). However, much current
literature regarding effectiveness of fuel treat-
ments focuses on forested systems. Annual burn-
ing reduces fuels, but also leads to simplification
of grasslands (Fuhlendorf et al. 2006). In addi-
tion to fuels reduction burning, targeted her-
bivory (grazing-only) has been considered as a
fuels reduction treatment (Taylor 2006, Leonard
et al. 2010). However, grazing-only treatment
was reported to have mixed utility depending on
grass morphology (Leonard et al. 2010) and may
also promote growth of unpalatable plants (Kirk-
patrick and Bridle 2016). Our study demonstrates
that restoration of the complex interaction
between fire and grazing benefits fuel manage-
ment objectives in addition to benefits to biodi-
versity reported by others (O’Reilly et al. 2006,
Fuhlendorf et al. 2010, Hovick et al. 2014) and
livestock production (Limb et al. 2011, Scasta
et al. 2016). We re-emphasize the importance of
the fire–grazing interaction and time since fire in
determining herbaceous biomass accumulation
(van Langevelde et al. 2003).
We assert that differences in the application of

fire or grazing will change the impacts of pyric
herbivory, altering the magnitude of differences
observed. For example, increased grazing

Fig. 5. Percentages of fire simulations within each
critical threshold associated with effectiveness of wild-
land firefighting techniques for fire-only and pyric her-
bivory treatments across four sites in the southern
Great Plains (2014–2017). Weather conditions simu-
lated were wind speeds 16 km per h (Low) and 40 km
per h (High), and fuel moistures from 5% to 35%, MSF
0–43.
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pressure could further reduce fire behavior, but
could also reduce the benefits to biodiversity
(Fuhlendorf et al. 2009). Increased grazing pres-
sure could also decrease the effect of fire on graz-
ing patterns (McGranahan et al. 2012, Augustine
and Derner 2014). It is also important to note that
dynamic fuel models convert live green vegeta-
tion to available fuels as a function of grass cur-
ing scenarios built into the software (Scott and
Burgan 2005). These models assume homogene-
ity and continuity of fuels, which may lead to an
overestimation of rates of spread (Parsons et al.
2011). However, the prediction of our models
that ungrazed areas could support fire in
<12 months is consistent with a previous report
that a similar grassland community sustained
fire spread as few as six months after fire, even in
a period of below average rainfall (Bragg 1982).
While we did not directly evaluate probability of
ignition, our models may have overestimated
this parameter given the presumed greenness of
a recently burned area. However, recent studies
have shown high variability, including relatively
rapid decreases within a year, in live fuel mois-
ture (Jurdao et al. 2012, Ellsworth et al. 2013).
Also, due to the heterogeneous nature of burns

at our sites, some transects may have measured
herbaceous vegetation that failed to burn due to
lack of fuel continuity or properties of the vegeta-
tion itself. Because information regarding such
vegetation properties is lacking in primary litera-
ture, avoidance of such areas would require first-
hand experience executing the fires, which was
not feasible in our study.

CONCLUSIONS

It is clear from our data that pyric herbivory
significantly benefits fuel management goals by
extending the effects of fuels reduction beyond
those of fire alone. Incorporating pyric herbivory
—which has repeatedly been reported to increase
biodiversity—has potential to reduce the occur-
rence and impacts of large and severe wildfires.
To achieve maximum benefit for fuel reduction
and conservation goals, managers could incorpo-
rate pyric herbivory at spatial and temporal pat-
terns most suitable to their needs depending on
landscape features.
Fire managers and researchers can use our

results applied across landscapes to decrease the
size or occurrence of catastrophic wildfires.

Fig. 6. Simulated rate of spread (m per s) for fire-only (solid orange) and pyric herbivory (dashed black) treat-
ments under extreme (40 km per h and 5% fuel moisture) conditions across four sites in the southern Great Plains
(2014–2017). Shaded areas indicate 95% confidence intervals (n = 638). Dashed horizontal line represents rate of
spread of 3.0 m per second.
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Incorporating pyric herbivory into fuel manage-
ment treatments will increase their utility by
extending the amount of time treatments remain
effective at preventing ignitions or reducing fire
behavior characteristics. Additionally, managers
can compare our data with fuels data specific to
other sites of interest to identify priority areas to
implement pyric herbivory where current man-
agement techniques fail to maintain fuels at levels
below which fire suppression tactics can be car-
ried out safely and successfully. Finally, assuming
readily accessible management records, wildfire
responders may be able to improve personnel
safety by prioritizing resources to areas most
recently treated with pyric herbivory.

ACKNOWLEDGMENTS

This research was funded by Joint Fire Sciences Pro-
gram, project 13-1-06-8. The authors would like to
thank the personnel at all study sites for logistical sup-
port and for providing burn history data. The authors
also appreciate the contributions of two anonymous
reviewers.

LITERATURE CITED

Abom, R., S. A. Parsons, and L. Schwarzkopf. 2016.
Complex mammal species responses to fire in a
native tropical savannah invaded by non-native
grader grass (Themeda quadrivalvis). Biological Inva-
sions 18:3319–3332.

Ager, A. A., M. A. Day, C. W. McHugh, K. Short, J. Gil-
bertson-Day, M. A. Finney, and D. E. Calkin. 2014.
Wildfire exposure and fuel management on west-
ern US national forests. Journal of Environmental
Management 145:54–70.

Allred, B. W., S. D. Fuhlendorf, D. M. Engle, and R. D.
Elmore. 2011. Ungulate preference for burned
patches reveals strength of fire-grazing interaction.
Ecology and Evolution 1:132–144.

Allred, B. W., S. D. Fuhlendorf, T. J. Hovick, R. D.
Elmore, D. M. Engle, and A. Joern. 2013. Conserva-
tion implications of native and introduced ungu-
lates in a changing climate. Global Change Biology
19:1875–1883.

Allred, B. W., J. D. Scasta, T. J. Hovick, S. D. Fuhlen-
dorf, and R. G. Hamilton. 2014. Spatial heterogene-
ity stabilizes livestock productivity in a changing
climate. Agriculture Ecosystems & Environment
193:37–41.

Anderson, R. C. 2006. Evolution and origin of the Cen-
tral Grassland of North America: climate, fire, and

mammalian grazers. Journal of the Torrey Botani-
cal Society 133:626–647.

Archer, S. R., E. M. Andersen, K. I. Predick, S. Schwin-
ning, R. J. Steidl, and S. R. Woods. 2017. Woody
plant encroachment: causes and consequences.
Pages 25–84 in Rangeland systems. Springer, New
York, New York, USA.

Archibald, S., C. E. R. Lehmann, J. L. Gomez-Dans,
and R. A. Bradstock. 2013. Defining pyromes and
global syndromes of fire regimes. Proceedings of
the National Academy of Sciences of USA
110:6442–6447.

Augustine, D. J., and J. D. Derner. 2014. Controls over
the strength and timing of fire-grazer interactions
in a semi-arid rangeland. Journal of Applied Ecol-
ogy 51:242–250.

Augustine, D. J., J. D. Derner, and D. G. Milchunas.
2010. Prescribed fire, grazing, and herbaceous
plant production in shortgrass steppe. Rangeland
Ecology & Management 63:317–323.

Bates, D., M. Maechler, B. Bolker, and S. Walker. 2013.
lme4: linear mixed-effects models using Eigen and
S4. R package version 1.0-5. https://github.com/lme
4/lme4/

Bidwell, T. G., D. M. Engle, and P. L. Claypool. 1990.
Effects of spring headfires and backfires on tall-
grass prairie. Journal of Range Management
43:209–212.

Bond, W. J., and J. E. Keeley. 2005. Fire as a global ‘her-
bivore’: the ecology and evolution of flammable
ecosystems. Trends in Ecology & Evolution 20:387–
394.

Bowman, D. 2005. Understanding a flammable planet
- climate, fire and global vegetation patterns. New
Phytologist 165:341–345.

Bragg, T. B. 1982. Seasonal-variations in fuel and fuel
consumption by fires in a bluestem prairie. Ecology
63:7–11.

Briggs, J. M., A. K. Knapp, J. M. Blair, J. L. Heisler, G.
A. Hoch, M. S. Lett, and J. K. McCarron. 2005. An
ecosystem in transition. Causes and consequences
of the conversion of mesic grassland to shrubland.
BioScience 55:243–254.

Butry, D. T. 2009. Fighting fire with fire: estimating the
efficacy of wildfire mitigation programs using
propensity scores. Environmental and Ecological
Statistics 16:291–319.

Carroll, J. M., T. J. Hovick, C. A. Davis, R. D. Elmore,
and S. D. Fuhlendorf. 2017. Reproductive plasticity
and landscape heterogeneity benefit a ground-nest-
ing bird in a fire-prone ecosystem. Ecological
Applications 27:2234–2244.

Clark, P. E., C. J. Williams, P. R. Kormos, and F. B. Pier-
son. 2018. Postfire grazing management effects on
mesic sagebrush-steppe vegetation: mid-summer

 ❖ www.esajournals.org 12 January 2019 ❖ Volume 10(1) ❖ Article e02578

STARNS ET AL.

https://github.com/lme4/lme4/
https://github.com/lme4/lme4/


grazing. Journal of Arid Environments 151:104–
112.

Collins, S. L., and L. B. Calabrese. 2012. Effects of fire,
grazing and topographic variation on vegetation
structure in tallgrass prairie. Journal of Vegetation
Science 23:563–575.

Collins, S. L., and M. D. Smith. 2006. Scale-dependent
interaction of fire and grazing on community
heterogeneity in tallgrass prairie. Ecology 87:2058–
2067.

Cook, W. M., and R. D. Holt. 2006. Fire frequency and
mosaic burning effects on a tallgrass prairie
ground beetle assemblage. Biodiversity and Con-
servation 15:2301–2323.

Coppedge, B. R., S. D. Fuhlendorf, W. C. Harrell, and
D. M. Engle. 2008. Avian community response to
vegetation and structural features in grasslands
managed with fire and grazing. Biological Conser-
vation 141:1196–1203.

Danley, R. E., R. K. Murphy, and E. M. Madden. 2004.
Species diversity and habitat of grassland passeri-
nes during grazing of a prescribe-burned, mixed-
grass prairie. Western North American Naturalist
64:72–77.

Donaldson, J. E., S. Archibald, N. Govender, D. Pol-
lard, Z. Luhdo, and C. L. Parr. 2018. Ecological
engineering through fire-herbivory feedbacks
drives the formation of savanna grazing lawns.
Journal of Applied Ecology 55:225–235.

Donovan, V. M., C. L. Wonkka, and D. Twidwell. 2017.
Surging wildfire activity in a grassland biome.
Geophysical Research Letters 44:5986–5993.

Ellair, D. P., and W. J. Platt. 2013. Fuel composition
influences fire characteristics and understorey
hardwoods in pine savanna. Journal of Ecology
101:192–201.

Ellsworth, L. M., C. M. Litton, A. D. Taylor, and J. B.
Kauffman. 2013. Spatial and temporal variability of
guinea grass (Megathyrsus maximus) fuel loads and
moisture on Oahu, Hawaii. International Journal of
Wildland Fire 22:1083–1092.

Engle, D. M., S. D. Fuhlendorf, A. Roper, and D. M.
Leslie. 2008. Invertebrate community response to a
shifting mosaic of habitat. Rangeland Ecology &
Management 61:55–62.

Fernandes, P. M., and H. S. Botelho. 2003. A review of
prescribed burning effectiveness in fire hazard
reduction. International Journal of Wildland Fire
12:117–128.

Fernandes, P. M., C. Loureiro, M. Magalh~aes, P. Fer-
reira, and M. Fernandes. 2012. Fuel age, weather
and burn probability in Portugal. International
Journal of Wildland Fire 21:380–384.

Forrestel, A. B., M. A. Moritz, and S. L. Stephens. 2011.
Landscape-scale vegetation change following fire

in Point Reyes, California, USA. Fire Ecology
7:114–128.

Foxcroft, L. C., D. M. Richardson, M. Rejmanek, and P.
Pysek. 2010. Alien plant invasions in tropical and
sub-tropical savannas: patterns, processes and pro-
spects. Biological Invasions 12:3913–3933.

Frost, C. C. 1998. Presettlement fire frequency regimes
of the United States: a first approximation. Pages
70–81 in Fire in ecosystem management:
shifting the paradigm from suppression to pre-
scription. Tall Timbers Fire Ecology Conference
Proceedings.

Fuhlendorf, S. D., and D. M. Engle. 2001. Restoring
heterogeneity on rangelands: ecosystem manage-
ment based on evolutionary grazing patterns. BioS-
cience 51:625–632.

Fuhlendorf, S. D., and D. M. Engle. 2004. Application
of the fire-grazing interaction to restore a shifting
mosaic on tallgrass prairie. Journal of Applied
Ecology 41:604–614.

Fuhlendorf, S. D., D. M. Engle, R. D. Elmore, R. F.
Limb, and T. G. Bidwell. 2012. Conservation of pat-
tern and process: developing an alternative para-
digm of rangeland management. Rangeland
Ecology & Management 65:579–589.

Fuhlendorf, S. D., D. M. Engle, J. Kerby, and R. Hamil-
ton. 2009. Pyric herbivory: rewilding landscapes
through the recoupling of fire and grazing. Conser-
vation Biology 23:588–598.

Fuhlendorf, S. D., R. W. Fynn, D. A. McGranahan, and
D. Twidwell. 2017. Heterogeneity as the basis for
rangeland management. Pages 169–196 in Range-
land systems. Springer, New York, New York, USA.

Fuhlendorf, S. D., W. C. Harrell, D. M. Engle, R. G.
Hamilton, C. A. Davis, and D. M. Leslie. 2006.
Should heterogeneity be the basis for conservation?
Grassland bird response to fire and grazing. Eco-
logical Applications 16:1706–1716.

Fuhlendorf, S. D., R. F. Limb, D. M. Engle, and R. F.
Miller. 2011. Assessment of prescribed fire as a con-
servation practice. Pages 75–104 in Conservation
benefits of rangeland practices: assessment, recom-
mendations, and knowledge gaps. USDA-NRCS,
Washington, D.C., USA.

Fuhlendorf, S. D., D. E. Townsend, R. D. Elmore, and
D. M. Engle. 2010. Pyric-herbivory to promote
rangeland heterogeneity: evidence from small
mammal communities. Rangeland Ecology & Man-
agement 63:670–678.

Fule, P. Z., L. L. Yocom, C. C. Montano, D. A. Falk, J.
Cerano, and J. Villanueva-Diaz. 2012. Testing a
pyroclimatic hypothesis on the Mexico-United
States border. Ecology 93:1830–1840.

Gates, E. A., L. T. Vermeire, C. B. Marlow, and R. C.
Waterman. 2017. Reconsidering rest following fire:

 ❖ www.esajournals.org 13 January 2019 ❖ Volume 10(1) ❖ Article e02578

STARNS ET AL.



Northern mixed-grass prairie is resilient to grazing
following spring wildfire. Agriculture Ecosystems
& Environment 237:258–264.

Ghermandi, L., S. Gonzalez, M. N. Lescano, and F.
Oddi. 2013. Effects of fire severity on early recov-
ery of Patagonian steppes. International Journal of
Wildland Fire 22:1055–1062.

Gonzalez, S. L., L. Ghermandi, and D. V. Pelaez. 2015.
Fire temperature effects on perennial grasses from
northwestern Patagonian grasslands. Ecological
Research 30:67–74.

Govender, N., W. S. W. Trollope, and B. W. Van Wil-
gen. 2006. The effect of fire season, fire frequency,
rainfall and management on fire intensity in
savanna vegetation in South Africa. Journal of
Applied Ecology 43:748–758.

Green, D. S., G. J. Roloff, B. R. Heath, and K. E. Hole-
kamp. 2015. Temporal dynamics of the reponses by
African mammals to prescribed fire. Journal of
Wildlife Management 79:235–242.

Guthrie, S. G., R. M. Crandall, and T. M. Knight. 2016.
Fire indirectly benefits fitness in two invasive spe-
cies. Biological Invasions 18:1265–1273.

Guyette, R. P., M. C. Stambaugh, D. C. Dey, and R. M.
Muzika. 2012. Predicting fire frequency with chem-
istry and climate. Ecosystems 15:322–335.

Hamilton, R. G. 2007. Restoring heterogeneity on the
Tallgrass Prairie Preserve: applying the fire-grazing
interaction model. Pages 163–169 in Proceedings of
the 23rd Tall Timbers fire ecology conference: fire
in grassland and shrubland ecosystems. Tall
Timbers Research Station. Tallahassee, Florida,
USA.

Harcombe, P. A., G. N. Cameron, and E. G. Glumac.
1993. Aboveground net primary productivity in
adjacent grassland and woodland on the coastal
prairie of Texas, USA. Journal of Vegetation Science
4:521–530.

Heinsch, F. A., and P. L. Andrews. 2010. BehavePlus
fire modeling system, version 5.0: design and fea-
tures. http://www.frames.gov/partner-sites/behave
plus/home

Holcomb, E. D., C. A. Davis, and S. D. Fuhlendorf.
2014. Patch-burn management: implications for
conservation of avian communities in fire-depen-
dent sagebrush ecosystems. Journal of Wildlife
Management 78:848–856.

Hovick, T. J., R. D. Elmore, and S. D. Fuhlendorf. 2014.
Structural heterogeneity increases diversity of non-
breeding grassland birds. Ecosphere 5:13.

Hovick, T. J., R. D. Elmore, S. D. Fuhlendorf, D. M.
Engle, and R. G. Hamilton. 2015. Spatial hetero-
geneity increases diversity and stability in grass-
land bird communities. Ecological Applications
25:662–672.

Hsu, J. S., and P. B. Adler. 2014. Anticipating changes
in variability of grassland production due to
increases in interannual precipitation variability.
Ecosphere 5:15.

Jurdao, S., E. Chuvieco, and J. M. Arevalillo. 2012.
Modelling fire ignition probability from satellite
estimates of live fuel moisture content. Fire Ecol-
ogy 8:77–97.

Kirkpatrick, J. B., and K. L. Bridle. 2016. Grazing and
the absence of fire promote the dominance of an
unpalatable shrub in a patch mosaic cyclic succes-
sional system. Australian Journal of Botany 64:45–
50.

Lane, D. R., D. P. Coffin, and W. K. Lauenroth. 2000.
Changes in grassland canopy structure across a
precipitation gradient. Journal of Vegetation
Science 11:359–368.

Leonard, S., J. Kirkpatrick, and J. Marsden-Smedley.
2010. Variation in the effects of vertebrate grazing
on fire potential between grassland structural
types. Journal of Applied Ecology 47:876–883.

Limb, R. F., S. D. Fuhlendorf, D. M. Engle, and R. F.
Miller. 2016. Synthesis paper: assessment of
research on rangeland fire as a management prac-
tice. Rangeland Ecology & Management 69:415–
422.

Limb, R. F., S. D. Fuhlendorf, D. M. Engle, J. R.
Weir, R. D. Elmore, and T. G. Bidwell. 2011. Pyric-
herbivory and cattle performance in grassland
ecosystems. Rangeland Ecology & Management
64:659–663.

McCarthy, G. J., and K. G. Tolhurst. 2001. Effectiveness
of broadscale fuel reduction burning in assisting
with wildfire control in parks and forests in Victo-
ria. Department of Natural Resources and Environ-
ment, Melbourne, Victoria, Australia.

McDonald, C. J., and G. R. McPherson. 2011. Fire
behavior characteristics of buffelgrass-fueled fires
and native plant community composition in
invaded patches. Journal of Arid Environments
75:1147–1154.

McGranahan, D. A., D. M. Engle, S. D. Fuhlendorf, S.
J. Winter, J. R. Miller, and D. M. Debinski. 2012.
Spatial heterogeneity across five rangelands man-
aged with pyric-herbivory. Journal of Applied
Ecology 49:903–910.

NIFC. 2017. National Interagency Fire Center. 1997–
2016 large fires (100,000 + acres). https://www.nifc.
gov/fireInfo/fireInfo_stats_lgFires.html

North, M., B. M. Collins, and S. Stephens. 2012. Using
fire to increase the scale, benefits, and future main-
tenance of fuels treatments. Journal of Forestry
110:392–401.

National Wildfire Coordinating Group (NWCG). 2014.
Incident response pocket guide. PMS #461, NFES

 ❖ www.esajournals.org 14 January 2019 ❖ Volume 10(1) ❖ Article e02578

STARNS ET AL.

http://www.frames.gov/partner-sites/behaveplus/home
http://www.frames.gov/partner-sites/behaveplus/home
https://www.nifc.gov/fireInfo/fireInfo_stats_lgFires.html
https://www.nifc.gov/fireInfo/fireInfo_stats_lgFires.html


#001077. National Interagency Fire Center, Boise,
Idaho, USA. https://www.nwcg.gov/sites/default/
files/publications/pms461.pdf

O’Reilly, L., D. Ogada, T. M. Palmer, and F. Keesing.
2006. Effects of fire on bird diversity and abun-
dance in an East African savanna. African Journal
of Ecology 44:165–170.

Parsons, R. A., W. E. Mell, and P. McCauley. 2011.
Linking 3D spatial models of fuels and fire: effects
of spatial heterogeneity on fire behavior. Ecological
Modelling 222:679–691.

Platt, W. J., S. L. Orzell, and M. G. Slocum. 2015. Sea-
sonality of fire weather strongly influences fire
regimes in South Florida savanna-grassland land-
scapes. PLoS ONE 10:28.

Polito, V. J. 2012. Effects of patch mosaic burning on
tick burden on cattle, tick survival, and tick abun-
dance. Dissertation. Oklahoma State University,
Stillwater, Oklahoma, USA.

Potvin, D. A., K. M. Parris, K. L. S. Date, C. C. Keely, R.
D. Bray, J. Hale, S. Hunjan, J. J. Austin, and J.
Melville. 2017. Genetic erosion and escalating
extinction risk in frogs with increasing wildfire
frequency. Journal of Applied Ecology 54:945–954.

Pyne, S. J. 2010. America’s fires: a historical context for
policy and practice. Forest History Society, Dur-
ham, North Carolina, USA.

R Core Team. 2016. R: a language and environment for
statistical computing. R Core Team, Vienna, Aus-
tria. https://cran.r-project.org/

Rothermel, R. C. 1972. A mathematical model for pre-
dicting fire spread in wildland fuels. Res. Pap. INT-
115. US Department of Agriculture, Intermountain
Forest and Range Experiment Station, Ogden,
Utah, USA.

Scasta, J. D., D. M. Engle, J. L. Talley, J. R. Weir, S. D.
Fuhlendorf, and D. M. Debinski. 2015. Drought
influences control of parasitic flies of cattle on pas-
tures managed with patch-burn grazing. Range-
land Ecology & Management 68:290–297.

Scasta, J., E. Thacker, T. Hovick, D. Engle, B. Allred, S.
Fuhlendorf, and J. Weir. 2016. Patch-burn grazing

(PBG) as a livestock management alternative for
fire-prone ecosystems of North America. Renew-
able Agriculture and Food Systems 31:550–567.

Scott, J. H., and R. E. Burgan. 2005. Standard fire
behavior fuel models: a comprehensive set for use
with Rothermel’s surface fire spread model. Gen.
Tech. Rep. RMRS-GTR-153. US Department of
Agriculture, Forest Service, Rocky Mountain
Research Station, Fort Collins, Colorado, USA.

Taylor, C. A. Jr 2006. Targeted grazing to manage fire
risk. Targeted grazing: a natural approach to vege-
tation management and landscape enhancement:
107–112.

Tolhurst, K. G., and G. McCarthy. 2016. Effect of pre-
scribed burning on wildfire severity: a landscape-
scale case study from the 2003 fires in Victoria.
Australian Forestry 79:1–14.

Twidwell, D., W. E. Rogers, C. L. Wonkka, C. A. Tay-
lor, and U. P. Kreuter. 2016. Extreme prescribed fire
during drought reduces survival and density of
woody resprouters. Journal of Applied Ecology
53:1585–1596.

USDI-BLM. 2014. Decision record and resource man-
agement plan amendment for fire and fuels man-
agement on public land in New Mexico and Texas.
Page 107 in U. D. o. Interior, editor. Bureau of
land management. USDI-BLM, Albuquerque, New
Mexico, USA.

U.S. Fish and Wildlife Service (USFWS). 2010a. Ara-
nsas National Wildlife Refuge Complex Compre-
hensive Conservation Plan and Environmental
Assessment. Albuquerque, New Mexico, USA.

U.S. Fish and Wildlife Service (USFWS). 2010b. Attwa-
ter's Prairie-Chicken Recovery Plan, Second Revi-
sion. Albuquerque, New Mexico, USA.

Van Auken, O. W. 2009. Causes and consequences of
woody plant encroachment into western North
American grasslands. Journal of Environmental
Management 90:2931–2942.

van Langevelde, F., et al. 2003. Effects of fire and her-
bivory on the stability of savanna ecosystems. Ecol-
ogy 84:337–350.

 ❖ www.esajournals.org 15 January 2019 ❖ Volume 10(1) ❖ Article e02578

STARNS ET AL.

https://www.nwcg.gov/sites/default/files/publications/pms461.pdf
https://www.nwcg.gov/sites/default/files/publications/pms461.pdf
https://cran.r-project.org/

