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Wildland-Urban Interface (WUI) Fires
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Pathways to Fire Spread (Exposure)

Radiation
Originally thought to be responsible for most/all ignitions

Direct Flame Contact
Smaller flames from nearby sources

Embers or Firebrands
Small burning particles which cause spot ignitions )
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Part 1: Data- Driven WUI Risk to Structures

e Mitigation must be applied toreduce therisk of structure losses in
the future

e Need methods torelate features/exposure to losses
e Previous analyses have several drawbacks:

o Noquantitative data ranking one mitigation measure vs.
another

o Analysis of losses using only linear correlations or statistics (no
interrelationships)

o Noexposure data (fire and embers) from wildland to structures
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Part 1: Data- Driven WUI Risk to Structures

- Create a WUI Dataset for Analysis and Model Validation:

- Quantify Significance of WUI Features on

Using DINS (Ground Truth), remotely sensed data and modeled exposure

Structure Destruction:

Use SHAP Values and feature
contributions

- Focus on 5 past fires in California:

Berkeley

WUI Fire Acres Destroyed
Burned | Structures

2017 Tubbs 36,807 | 5,636

2017 Thomas | 281,893 | 1,063

2018 Camp 153,336 | 18,804

2019 Kincade | 77,758 374

2020 Glass 67,484 | 1,528
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2018 Camp

2017 Tubbs
2019 Kincade
2020 Glass

2017 Thomas

DINS 2017_2022 [87156]
Not Damaged [34677]
©  Damaged [4435]

e Destroyed [47687]
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Combining and processing datasets

Structure Features: Roof, siding, windows, vent,
eaves, etc.
Year Built

Collected
Data

e Airborne LiDAR data for Sonoma County
o 1 m. resolution raster for veg intensity
e  Aerial and Street View Imagery

Defensible Space

Structure Separation e Calculated with MS Structure Footprints

Missing
Data e Generated by reconstructing past fires

Flame and Embers e  Models run with vegetation and limited urban spread -

extract fire intensity and ember cast

e Adding undamaged structures for past fires

Undamaged structures (MS Footprints, OSM, Imagery)

DINS

Validation
e Ground Truth & RS MODIS , VIIRS, GOES




CAL FIRE
DINS -
Damage
INSpection
data

WUI data:

values= 47,000
Unique data point=
45,947 DINS 2017_2022 [87156]

Undamaged [34677]
Damaged [4435]
e Destroyed [47687]
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Defensible Space Assessment Zone 0: Fist five feet

s ¥ Q. i) Zone 1:Within 30 feet

Zone 2: Within 100 feet

No defensible space Zone 0 and 1 clear

Defensible space is the buffer between a
structure and the surrounding area.
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Separation Distance

Structure Separation Distance +
Unburned structures

&

MS Building Footprints - script analysis

Vegetation Separation Distance

("

LIDAR (Sonoma County)



WUI fire spread model: HAMADA + ELMFIRE

K4: downwind reach of fire [m] . _ K. — |(a+d)] ©
Ks: sidewind reach of fire [m] Wmd(sgij =V) d Tq
K,: upwind reach of fire [m] K, K, = (g n d) n {'(a;d)' (t — Ts)}
v: wind speed [m/s] _/ K a S
) . d fr=— Kd __(a [(a+d)]
a: house size [m] |71 K, = (E + d) + { | (t— Tu)}

d: separation distance [m]

Burrling house T4: downwind propagation time [min]

T,: sidewind propagation time [min]

T4, T, and T,: are functions of a, d, v, and
fire resistant buildings T,: upwind propagation time [min]
t: characteristic time [min] e.g.,120 min

Hamada, M. (1951). On the Rate of Fire Spread. Study of Disasters, 1.

Purnomo DM et al. (2024) Integrating an urban fire model into an operational wildland fire model to simulate one dimensional
wildland—urban interface fires: a parametric study. International Journal of Wildland Fire 33, WF24102.doi:10.1071/WF24102 14
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Fire Reconstruction: Kincade Fire 2019

2 Damage data
EN & Affected (1-9%)

¥ & Destroyed (>50%) N&

# Major (26-50%)
#& Minor (10-25%)
# No Damage

Observed perimeter

% ignitions

Kincade Fire, 2019
DINS Losses +

Observed fire perimeter:
GeoMac-NIFC
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Fire Reconstruction: Kincade Fire 2019

DINS Losses +

Observed fire perimeter:
GeoMac-NIFC

+
SIMULATION:
ELMFIRE + HAMADA

Flame Length
Ember

| Damage data (DINS)

P+ NoDamage

= & Affected (1-9%)

# Destroyed (>50%)

} & Major (26-50%)

# Minor (10-25%)
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Time of arrival (Simulation)
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Fire Reconstruction: Camp Fire 2018

LANDSAT 8 image captured at 10:45 am, 11/8/2018
This composite image shows infrared heat, some areas are obstructed by smoke
Processing by Zeke Lunder - Deer Creek Resources, Chico, California

DINS data
Not Damaged [4078]
¢ Damaged [754]
® Destroyed [18808]

| Time of Arrival (Hours)
| 67




Extracting Significance of WUI Features

- Features are inter-related so linear or statistical methods can’t capture their
influence

-  Weattempt to fit the data to a machine learning (ML) model using regression and
classification methods and extract the importance of individual features.

 Itisimportantto first “clean/preprocess” the data and avoid biases, ensuring
compatibility and enhancing the overall performance of the models:

« Imputation was explored due to the presence of numerous NaN values in the
dataset.

- Standardized the numerical variables and Encoded categorical variables

Berkeley
&’ Fire Research Lab




Extracting Significance of WUI Features

- Weexplore 4 models and use the “best fit”
o Linear/Logisticregression
o Random Forest
o Gradient Boosting/ XGBoost
o CatBoost
o XGBoost showed betterresultsinoverallaccuracy.
e We extract feature contributions through SHAP (SHapley Additive exPlanations)
o Interpreting machine learning models
o Ensuring consistency and local accuracy

Berkeley
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Feature Contributions Using XGBoost and SHAP Values
Stacked WUI data: 5 Past fires (2017-2022)
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Feature Contributions Using XGBoost and SHAP Values

2017 Tubbs Fire 2017 Thomas Fire

+0.15 +0.18

Flame Length Structure Separation
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Feature Contributions Using XGBoost and SHAP Values

Structure Separation
Flame Length

Year Built

Ember Deposited
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Feature Contributions Using XGBoost and SHAP Values

2020 Glass Fire
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Results - Top 3 factors

- Driving factors to structure destruction
- CampFire
o Rapid fire through densely-packed structures
Surrounded by heavy canopies and vegetation
o Structure separation also keyin Knapp et al.

m Closely spaced structures drove spread through
communities.

o Flamelength - structures directly impacted by nearby
heavy vegetation

o Yearbuilt - older homes fared poorlyin the fire
- KincadeFire
o Structure Separationis key

m Variationsindensity - clustered structures can
spread fire

o Low structure density in oak/scrub area surrounded
by vineyards
m Flamelength and Year Built

Noah Berger / AP 24

Berkeley Knapp, E.E., et al. Housing arrangement and vegetation factors associated with single-family home

“ Fire Research Lab survival in the 2018 Camp Fire, California. fire ecol 17, 25 (2021).



Results - Top 3 factors

Driving factors to structure destruction
Tubbs Fire
o Flamelength
o Structure separation- Fountaingrove, Coffey Park ey 7
o Yearbuilt Coffey Park, Santa Rosa / Marcus Yam/ Los
Thomas Fire Angeles Times
o Structure Separation - densely populated area
o Flamelength
o Year Built
Glass Fire
o Structure Separation - Deer Park
o Flamelength
o Year Built

Los Padres National Forest, Ventura County /
USFS photo
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Influence of Mitigation Factors

Structure Loss

 MLmodelcanbeusedasa
predictive tool (~82% accuracy)

mmm Destroyed
Survived

« Potential influence of different Hardenin
mitigation strategies tested
» Probability of survivingincreases :
with hardening + defensible Hardening+ Zone 0
space .
« Evenwithout moving (spacing) Hardening
structures, can drastically cut
down on losses N 20%
* Does notincorporate dynamic NoMitigation
(spread) or suppression effects : ® ercentage (%) 26
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PART II: New
WU-E Model




HAMADA: a summary

e A function of house size, separation distance, wind speed, and hardening density

Berkeley
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HAMADA: a summary

e A function of house size, separation distance, wind speed, and hardening density

o Capabilities:
o Provide time of arrival outputs
o Provide ember cast outputs
o Provide fireline intensity outputs. Intensity given by a burning structure.
o Variations in house size, separation distance, and hardening density.

Berkeley
&’ Fire Research Lab




HAMADA: a summary

e A function of house size, separation distance, wind speed, and hardening density

o Capabilities:
o Provide time of arrival outputs
o Provide ember cast outputs
o Provide fireline intensity outputs. Intensity given by a burning structure.
o Variations in house size, separation distance, and hardening density.

e Drawbacks:
o Limited structural properties variations (e.g., different combustible fraction)
o No fire incident intensity outputs. Intensity received by a structure from other
burning structures.

Berkeley
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Purnomo DM et al. (2024) Integrating an urban fire model into an operational wildland fire model to
simulate one dimensional wildland—urban interface fires: a parametric study. International Journal of

Wildland Fire 33, WF24102.doi:10.1071/WF24102
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WU-E (cont’d)

Ember landing
probability

a Q:: heat received by target [kW]

DFC At 4.: DFC at target cell [KW]
£ / / / g, : radiation from source [kW/m?]
4 2 HRR: heat release rate [kW]
! A 0. : DFC coefficient

' l // /m 1 a, : radiation coefficient

/ A;: contact area with flame [m?]

/ // g ’ q 7 71 / // l/ / Ax: cell size [m]

{: mean

Radiation o std. deviation

32

Purnomo, D. M. J., et. al. (2024). Reconstructing modes of destruction in wildland—urban interface fires using a semi-physical level-set model.

Proceedings of the Combustion Institute, 40(1-4), 105755. https://doi.org/10.1016/j.proci.2024.105755
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WU-E (cont’d)

Ember landing
probability

DFC A,
/

DFC radiation
Q: = a.qg, + aréh,*,At

| HRR - A,
Ge (x,¥) = Az
. 035HRR
qr (r) = “anR

wind

—

Q.: heat received by target [kW]
G- DFC at target cell [kW]

/ / / gy : radiation from source [kW/m?]
4l

4 HRR: heat release rate [kW]

A 0. : DFC coefficient

4 d a, : radiation coefficient

s

f A;: contact area with flame [m?]

Ax: cell size [m]

/ il V1 V1 V1 V'l V1

=
yay

Radiation

W1: mean
o: std. deviation
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Purnomo, D. M. J., et. al. (2024). Reconstructing modes of destruction in wildland—urban interface fires using a semi-physical level-set model.
Proceedings of the Combustion Institute, 40(1-4), 105755. https://doi.org/10.1016/j.proci.2024.105755
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DFC radiation Ember

_ : 1y lognormal
9 Qt = Acqc + arqr At 9
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Purnomo, D. M. J., et. al. (2024). Reconstructing modes of destruction in wildland—urban interface fires using a semi-physical level-set model.
Proceedings of the Combustion Institute, 40(1-4), 105755. https://doi.org/10.1016/j.proci.2024.105755



https://doi.org/10.1016/j.proci.2024.105755
https://doi.org/10.1016/j.proci.2024.105755




Comparison of WUI models capabilities

HAMADA WU-E
e Provide time of arrival outputs e Provide time of arrival outputs
e Provide ember cast outputs e Provide ember cast outputs
e Provide fireline intensity outputs. e Provide fireline intensity outputs.
e Limited structural property variations e Flexible structural property variations

e Provide fire incident intensity outputs

e Physical framework for improvement

Berkeley
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Concluding Remarks
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Conclusions

e Significant factors leading to building destruction in the WUI:
o  Structure Separation Distance
m Fire spread in the WUI often depends on building arrangement

o Exposure : Fire intensity and firebrands/embers

m Flame Length critical role in determining the intensity and spread of the fire across different landscapes
m Ember exposure key because a wide area is impacted by embers
o Building features (vents, siding, fences, decks, etc.) - Home Hardening
m Importance varies depending on the fire and specific building construction
o Defensible Space (Vegetation Separation Distance), particularly in Zone 0, plays a crucial role in mitigation.
o Year built: Year that primary structure in parcel was constructed (confounding parameter)
o Data-driven ML model useful for some predictions (e.g., response function) and impacts of mitigation

e Newly model, WU-E, improved previously-used model (HAMADA), by providing fire incident intensity

outputs, flexible structural properties variations, and an adaptable physical framework for spread. 38

Preprint paper: https://doi.org/10.21203/rs.3.rs-5776626/v1; ELMFIRE Code: https.//elmfire.io/
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Thank you!
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