Mechanistic Modeling for Future Forest Management: Predicting Vegetation Shifts in a Dry Mixed Conifer Forest

UCDAVIS KATES

06/25/2024 Adam Hanbury-Brown, Claire Tortorelli, Derek Young, Charlie Koven, Xiulin Gao, Ryan Knox, Lara Kueppers, Jennifer Holm, Andrew Latimer Widespread concern for dry mixed conifer forests

1.2 °C warming since 1930

Vegetation-climate mismatch

Declines in regeneration

Life history strategies in dry mixed conifer forests

Resist fire, recruit from seed

Persist in the shade

Post-fire resprouting

Basal resprouts

Seed banking

Managers need projections of future vegetation

To plan climate-smart management interventions

- Where to thin?
- How much to thin?
- How long do fuel reduction treatments last?

How do we best prioritize resources?

Will current practices work in the future?

More mechanistic projections are needed

Prior model predictions omit

- Explicit competition within and between pfts
- Management
- Species' life history strategies
- Ecophysiology

Reliance on shifts in bioclimatic niche

Fig. 1 Distribution of the vegetation classes simulated for the historical (1961–1990) and PCM1-A2 future period (2070–2099). The vegetation class mapped at each grid cell is the most frequent class simulated during the time period

The Functionally Assembled Terrestrial Ecosystem Simulator

Represents:

- Ecophysiology
- Competition
- Disturbance recovery
- Life history strategies
- SPITFIRE (Thonicke, 2010)

Challenges:

- Data hungry (> 200 params)
- No training wheels
- Coexistence is hard

Research Question and Hypothesis

Dresshipminterender finelverditetjanskieerteerter bennstereisburgteteneveligeeterseveligeeter

5 PFTs

Used Buotte, 2021 as a starting point for conifer PFTs

Model parameterization and evaluation

First goal: Find parameter sets that accurately simulate a pre-Euro-American settlement (PEAS) forest

- Used literature and plant trait databases (e.g. TRY, BAAD, Tallo) to empirically constrain the ranges of key model parameters
- Tested 5,376 possible parameter combinations (ensemble members)
- Simulated a forest using pre-industrial climate and CO2 and allowing it to run for 700 years

We evaluated the model in 1870 and 2015 then projected out to 2100

700 yr spin-up with PEAS fire

PI climate + CO2

Model reproduces historical fire regimes and forest structure

Each ensemble member differs in structure and composition

\star Obs Pine cedar oak

Model predicts a shift from conifers to oaks

Treatment longevity is 10-15 years

Pines are dying of fire and drought stress

Oaks stay more productive and recruit at higher rates

Implications for management

- Single treatments not effective in long-term
- Continuous treatment more effective, but conifer declines still possible (especially after 2060)
- Prioritize conservation of large cedars
- Prioritize stands of large pines for treatment
- Efficacy of fuel reduction can change over time (e.g. shrub-fuel feedback)

Management outcomes will depend on key physiological traits and processes

Most influential traits and parameters

- 1. Litter decomposition rates
- 2. Oak specific leaf area
- 3. Pine, oak, and cedar Vcmax (drives photosynthesis rates)
- 4. Oak scorch height
- 5. Shrub diameter to crown area ratio
- 6. Shrub leaf turnover rates

Next Steps

- Collect data on most influential parameters
- Run with alternate future climate scenarios
- Regional simulations

Extra Slides Below

Carbon stocks decrease when conifer basal area decreases

Ecological criteria for PEAS MCF forest

Criterion	Supporting observations
Annual burned area is 2-12% of land area	Mallek et al., 2013; Safford and Stevens, 2017; Williams et al., 2023
Fires are predominantly low intensity (mean fire line intensity < 350 kW m-1)	Mallek et al., 2013; Safford and Stevens, 2017; Williams et al., 2023
Conifer basal area is 10 – 55 m2 ha -1	Scholl & Taylor, 2010; Collins et al., 2015; Stephens et al., 2015; Safford & Stevens, 2017
Tree stem density (> 10 cm dbh) is < 400 N ha-1	Knapp et al., 2012; Stephens et al., 2015; Safford and Stevens, 2017
There are \geq 5 "big" (> 80 cm dbh) conifers ha-1	Safford and Stevens, 2017
Some pine survives (> 1 m²ha⁻¹ pine basal area)	Safford and Stevens, 2017; Stephens et al. 2015
Some oak survives (> 0.1 m² ha¹ oak basal area)	Safford and Stevens, 2017; OAK CITATION
Shrub cover is 5-54% of the site's surface area	Show & Kotok, 1924; Bonnicksen & Stone, 1982; Cronemiller, 1959; Knapp et al., 2013; Collins et al., 2015; Stephens et al., 2015; Safford & Stevens, 2017
NPP is 0.54-0.9 g C m-2 yr -1	Tague et al., 2009; He et al., 2012; <u>Goulden</u> et al., 2012; Dore et al., 2016; <u>Bogan</u> et al., 2018
All pfts coexisting (> 0.1 m2 ha-1 of basal area per pft)	Coexistence required for model experiment

Parameter	Pft	M1		M2	N	//3	М	4	M5	
fates frag maxdecomp	all		87		98	1	LO	81		42
fates leaf slatop	oak		90		94	3	32	86	5	77
fates leaf vcmax25top	oak		72		20	ç	92	63	3	31
fates leaf vcmax25top	pine		13		38	(50	33	3	75
fates_leaf_vcmax25top	cedar		38		44		5	ç)	38
fates fire alpha SH	oak	(94		48	(60	3	3	40
fates allom d2ca coefficient max	shrub		98	1	8	Ę	52	64	Ļ	68
fates leaf slatop	pine		97		59	Ş	92	79)	57
fates allom agb1	oak		97		34	9	98	91		45
fates leaf vcmax25top	shrub		31		29	8	33	8	3	74
fates_frag_seed_decay_rate	shrub		66		11	3	33	62	2	85
fates_turnover_leaf	shrub		1		19	Ĺ	51	18	3	51
fates_leaf_slatop	fir	-	97		56	5	73	92	2	34
fates_leaf_slatop	cedar		97		56	7	73	92	2	34
fates_recruit_seed_alloc_mature	pine		84		23		4	72	2	2
fates_fire_drying_ratio	all	1	63		39	17	73	8	3	83
fates_recruit_seed_germination_rate	conifer		68		86	1	18	41		87
fates_nonhydro_smpsc	pine		74		25		0	11	1	59
fates_fire_frac_resprout	shrub	Ţ	60		5	ų,	70	55	5	19
fates_nonhydro_smpsc	fir		34		11	Ę	54	29)	71
fates_turnover_leaf	oak		0		44	ç	96	12	2	53
fates_alloc_storage_cushion	oak		42		49	Ĺ	56	58	3	42
fates_recruit_seed_dbh_repro_threshold	conifer		39		58	(57	73	3	54
fates_leaf_vcmax25top	fir		44		48	-	L5	10)	62
fates_nonhydro_smpsc	cedar	1	61		88		8	85	5	38

