

LAHAINA: CONFLAGRATION FACTORS

Structure Density
Connective Fuels
Building Materials

WIND-DRIVEN BUILDING-TO-BUILDING FIRE SPREAD Wind Speed **Target** Angle **Target** Shed Building **Structure Separation** Material Material Distance

PHASE 1 EXPERIMENTS

DAMAGE CATEGORIES

Classification by Final Building Status

WIND FRAGILITY

Wind damage increases with wind speed.

Heat Flux Total Energy

HEAT FLUX and ENERGY

THE FLOW OF THERMAL ENERGY, PER UNIT OF TIME.

THE THERMAL ENERGY ACCUMULATED DURING A TIME PERIOD.

STRUCTURAL FAILURE SHAPING FIRE DYNAMICS

INSTANTANEOUS: Peak Heat Flux

Heat Load

Characteristic response time

l	Table 4 ⁴ . Thermal response time (sec) of materials to reach the average mentioned failure
l	temperature range in seconds (failure time) from initial temperature of 20°C.

Ramp rate (W/m²·s)	Window glass pane (93-265°C) [73]	Plywood (300-365°C) [74]	PVC (115-245°C) ⁵ [75]	Fiber cement boards (>400°C) [76]
1000	49.5	25.4	19.4	33.9
2000	31.2	16	12.2	21.3
3000	23.8	12.2	9.3	16.3
4000	19.6	10.1	7.7	13.3
5000	16.9	8.6	6.6	11.6
6000	15	7.8	5.9	10.3
7000	13.5	6.9	5.3	9.2

ENERGY FLUENCE

THE FLOW OF THERMAL ENERGY, PER UNIT OF TIME.

THE THERMAL ENERGY ACCUMULATED DURING A TIME PERIOD.

FIRE FRAGILITY

Fig. 11. Wind damage band for 1-3 story residential buildings. ♦ Upper, ■ lower.

NO DAMAGE: 0% COSMETIC: 0% ENVELOPE: 0% DESTROYED: 100%

Lab Example: Damage

Lab Example: Destroyed

NO DAMAGE: 0%

COSMETIC: 1%

ENVELOPE: 55%

DESTROYED: 44%

Lab Example: Damage

Lab Example: Destroyed

ENVELOPE: 77%

DESTROYED: 3%

NO DAMAGE: 3%

COSMETIC: 17%

THE PROBABILISTIC FRAMEWORK

Extreme Wind Conditions

HIGH WIND TESTS

Outside Inside the Attic

7A Recommendations

Under typical wind conditions

- 1. For a structure separation of approximately 30 feet: windows should be upgraded or protected.
- 2. For a structure separation of approximately 20 feet:

 In addition to 1, only noncombustible siding should be allowed.
- 3. For a structure separation of approximately 10 feet: In addition to 1 and 2,
 - Eaves should be enclosed
 - A noncombustible fence should be required.

Test non-chapter 7A compliant ADUs

Create a library of heat flux data under wind driven conditions

Test medium scale samples

Continue with the statistical analysis

Phase 3

